贝塞尔曲线(Bezier Curve)原理、公式推导及matlab代码实现

目录

参考链接

定义

直观理解

 公式推导

一次贝塞尔曲线(线性公式)

二次贝塞尔曲线(二次方公式)

 三次贝塞尔曲线(三次方公式)

n次贝塞尔曲线(一般参数公式)

代码实现


参考链接

贝塞尔曲线(Bezier Curve)原理及公式推导_bezier曲线-CSDN博客

贝塞尔曲线(Bezier Curve)原理、公式推导及matlab代码实现-CSDN博客

贝塞尔曲线——这个是可以在线控制点来绘制贝塞尔曲线的网站

定义

贝塞尔曲线用于计算机图形绘制形状,CSS 动画和许多其他地方。

贝塞尔曲线(Bezier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。一般的矢量图形软件通过它来精确画出曲线,贝兹曲线定义:起始点、终止点(也称锚点)、控制点。通过调整控制点,贝塞尔曲线的形状会发生变化。 贝塞尔曲线是计算机图形学中相当重要的参数曲线,在一些比较成熟的位图软件中也有贝塞尔曲线工具,如PhotoShop等。

1962年,法国数学家Pierre Bézier第一个研究了这种矢量绘制曲线的方法,并给出了详细的计算公式,因此按照这样的公式绘制出来的曲线就用他的姓氏来命名,称为贝塞尔曲线。

贝塞尔曲线的一些特性:

  • 使用n个控制点\{P_1,P_2,\cdots ,P_n\}来控制曲线的形状
  • 曲线通过起始点P_1 和终止点P_n,接近但不通过中间点P_2\sim P_{n-1}
  • 曲线的阶次等于控制点的数量减一。 对于两个点我们能得到一条线性曲线(直线),三个点 — 一条二阶曲线,四个点 — 一条三阶曲线。

  • 曲线总是在控制点的凸包内部

由于最后一个属性,在计算机图形学中,可以优化相交测试。如果凸包不相交,则曲线也不相交。因此,首先检查凸包的交叉点可以非常快地给出“无交叉”结果。检查交叉区域或凸包更容易,因为它们是矩形,三角形等(见上图),比曲线简单的多。

直观理解

Step 1. 在二维平面内选三个不同的点并依次用线段连接

Step 2. 在线段ABBC上找到DE两点,使得\frac{AD}{DB}=\frac{BE}{EC}

 Step 3. 连接DE,并在DE上找到F点,使其满足\frac{DE}{FE}=\frac{AD}{DB}=\frac{BE}{EC}(抛物线的三切线定理)

Step 4. 找出符合上述条件的所有点

 上述为一个二阶贝塞尔曲线。同样的有n阶贝塞尔曲线:

曲线图示
一阶

二阶

三阶

四阶

五阶

 公式推导

一次贝塞尔曲线(线性公式)

定义:给定点P_0P_1,线性贝塞尔曲线只是一条两点之间的直线,这条线由下式给出,且其等同于线性插值:

B(t)=P_0+(P_0-P_1)t=(1-t)P_0+tP_1,t\in [0,1]

其中,公式里的P_0P_1同步表示为其xy轴坐标。

假设P_0坐标为(a.b)P_1坐标为(c,d)P_2坐标为(x,y),则有:

 \frac{x-a}{c-x}=\frac{t}{1-t}\Rightarrow x=(1-t)a+tc

同理有:

\frac{y-b}{d-y}=\frac{t}{1-t}\Rightarrow y=(1-t)b+td

于是可将上式简写为:


B(t)=(1-t)P_0+tP_1,t\in [0,1]

二次贝塞尔曲线(二次方公式)

定义:二次贝塞尔曲线的路径由给定点P_0P_1P_2的函数B(t)给出:

B(t)=(1-t)^2P_0+2t(1-t)P_1+t^2P_2,t\in [0,1]

 假设P_0P_1上的点为AP_1P_2上的点为BAB上的点为C(也即C为曲线上的点。则根据一次贝塞尔曲线公式有:

A=(1-t)P_0+tP_1

B=(1-t)P_1+tP_2

C=(1-t)A+tB

将上式中AB带入C中,即可得到二次贝塞尔曲线的公式:


B(t)=(1-t)^2P_0+2t(1-t)P_1+t^2P_2,t\in [0,1]

 三次贝塞尔曲线(三次方公式)

同理可得三次贝塞尔曲线公式:

B(t)=(1-t)^3P_0+3t(1-t)^2P_1+3t^2(1-t)P_2+t^3P_3,t\in [0,1]

n次贝塞尔曲线(一般参数公式)

定义:给定点P_0P_1\cdots ,P_n,则n次贝塞尔曲线由下式给出:

n次贝塞尔曲线的公式可由如下递归表达:

 \mathrm{P}_{0}^{\mathrm{n}}=(1-\mathrm{t}) \mathrm{P}_{0}^{\mathrm{n}-1}+\mathrm{tP}_{1}^{\mathrm{n}-1}, \mathrm{t} \in[0,1]

进一步可以得到贝塞尔曲线的递推计算公式:

\mathrm{P}_{\mathrm{i}}^{\mathrm{k}}\left\{\begin{array}{l} \mathrm{P}_{\mathrm{i}}, \mathrm{k}=0 \\ (1-\mathrm{t}) \mathrm{P}_{\mathrm{i}}^{\mathrm{k}-1}+\mathrm{tP}_{\mathrm{i}+1}^{\mathrm{k}-1}, \mathrm{k}=1,2, \ldots, \mathrm{n} ; \mathrm{i}=0,1, \ldots, \mathrm{n}-\mathrm{k} \end{array}\right.

代码实现

首先来看不同阶数的贝塞尔曲线公式,来找共同点:

N=2:         B(t)=(1-t)P_0+tP_1,t\in [0,1]

N=3:         B(t)=(1-t)^2P_0+2t(1-t)P_1+t^2P_2,t\in [0,1]

N=4:        B(t)=(1-t)^3P_0+3t(1-t)^2P_1+3t^2(1-t)P_2+t^3P_3,t\in [0,1]

可将贝塞尔曲线一般参数公式中的表达式用如下方式表示:
设有常数 a,b 和 c,则该表达式可统一表示为如下形式:

a(1-t)^bt^cP_n

根据上面的分析就可以总结出 a,b,c 对应的取值规则:

b: (N - 1)递减到 0 (b 为 1-t 的幂)
c: 0 递增到 (N - 1) (c 为 t 的幂)
a: 在 N 分别为 1,2,3,4,5 时将其值用如下形式表示: 

N=1:---------1
N=2:--------1 1
N=3:------1 2 1
N=4:-----1 3 3 1
N=5:---1 4 6 4 1
a 值的改变规则为: 杨辉三角

-------------------------------------------------------------------

理论基础有了,开始写代码

a 值用杨辉三角计算,b ,c 值在for 循环里计算,P_n从传入的点坐标读取。

step1:首先使用杨辉三角的方式生成a值
 

    N = len(control_points)ta = np.zeros((N, N))# 初始化杨辉三角左右两边的值为1for i in range(N):ta[i, 0] = 1ta[i, i] = 1# 计算杨辉三角for row in range(2, N):for col in range(1, row):ta[row, col] = ta[row-1, col-1] + ta[row-1, col]

step2:生成贝塞尔曲线上的点

    p = np.zeros((M, 2))for i in range(M):t = i / M  # 确定每一个点的比例for k in range(N):c = k  # 分别确定 a, b, c 三个系数b = N - c - 1  # 分别确定 a, b, c 三个系数a = ta[N-1, k]  # 分别确定 a, b, c 三个系数# 确定点的 x 和 y 坐标p[i, 0] += a * (1 - t)**b * t**c * control_points[k, 0]p[i, 1] += a * (1 - t)**b * t**c * control_points[k, 1]

完整代码


# N表示控制点个数,M表示时间步
import numpy as np
from scipy.special import combdef calculate_bezier_curve(control_points, M=1000):N = len(control_points)ta = np.zeros((N, N))# 初始化杨辉三角左右两边的值为1for i in range(N):ta[i, 0] = 1ta[i, i] = 1# 计算杨辉三角for row in range(2, N):for col in range(1, row):ta[row, col] = ta[row-1, col-1] + ta[row-1, col]p = np.zeros((M, 2))for i in range(M):t = i / M  # 确定每一个点的比例for k in range(N):c = k  # 分别确定 a, b, c 三个系数b = N - c - 1  # 分别确定 a, b, c 三个系数a = ta[N-1, k]  # 分别确定 a, b, c 三个系数# 确定点的 x 和 y 坐标p[i, 0] += a * (1 - t)**b * t**c * control_points[k, 0]p[i, 1] += a * (1 - t)**b * t**c * control_points[k, 1]return p# 示例调用
control_points = np.array([(0, 0), (1, 2), (2, 0)])
result_points = calculate_bezier_curve(control_points)# 打印结果
print(result_points)# 可视化
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 6))
plt.plot(result_points[:, 0], result_points[:, 1], label='Bezier Curve')

下图是一个生成的二阶贝塞尔曲线(有3个控制点)

 另外一种实现方式:

def bezier_curve(points, n_times=1000):"""Generate a Bezier curve from control points.Args:points (list of tuples): control points.n_times (int): number of time steps (resolution of the curve).Returns:list of tuples: points on the bezier curve."""n_points = len(points)t = np.linspace(0, 1, n_times)curve = np.zeros((n_times, 2))for i in range(n_points):binom = comb(n_points - 1, i) # 计算二项式系数,即组合数。表示从 n_points - 1 个元素中选择 i 个元素的方式有多少种。curve += np.outer(binom * (t ** i) * ((1 - t) ** (n_points - 1 - i)), points[i])return curvecontrol_points1 = [(0, 0), (1, 2), (2, 0)]
bezier1 = bezier_curve(control_points1)
print(bezier1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/634185.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言入门第二节-概述C语言

C语言入门第二节-概述C语言 一.C语言的程序结构 1.当前最新的C语言标准为c11&#xff0c;在他之前的C语言标准为c99&#xff1b; 2.结构主要包括&#xff1a;1.预处理指令&#xff0c;2.函数&#xff0c;3,变量&#xff0c;4.语向和表达式&#xff0c;5.注释 #include<std…

基于局部信息提取的人脸标志检测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 人脸检测 4.2 局部区域选择 4.3 特征提取 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .........................................…

java面试题(23):Spring Bean如何保证并发安全

1 问题分析 我们知道默认情况下&#xff0c;Spring中的Bean是单例的&#xff0c;所以在多线程并发访问的时候&#xff0c;有可能会出现线程安全问题。 2 解决方案 有几个方面的解决思路&#xff1a; 我们可以设置Bean的作用域设置为原型&#xff08;prototype&#xff09;&a…

一篇文章带你彻底了解flex布局

哈喽&#xff0c;大家好呀&#xff0c;我是前端理想哥&#xff0c;今天我们来聊聊 flex 布局。 好&#xff0c;主角登场。 CSS 弹性盒子模型( Flexible Box 或者 Flexbox ) 先来看看它的定义&#xff1a;弹性布局是指通过调整其内元素的宽高&#xff0c;从而在任何显示设备上…

Qt实现在5种情况下快速求最值

1. 求最大值 const T &qMax(const T &a, const T &b) 举例&#xff1a; float value1 20; float value2 30; float result qMax(value1, value2); qDebug() << "Result:" << result; 结果&#xff1a;Result: 30 2. 求最小值 const …

【02】mapbox js api加载arcgis切片服务

需求&#xff1a; 第三方的mapbox js api加载arcgis切片服务&#xff0c;同时叠加在mapbox自带底图上 效果图&#xff1a; 形如这种地址去加载&#xff1a; http://zjq2022.gis.com:8080/demo/loadmapbox.html arcgis切片服务参考链接思路&#xff1a;【01】mapbox js api加…

基于gd32f103移植freemodbus master 主栈

1.移植freemodbus master需要先移植RT-Thread操作系统 GD32F103C8T6移植 RTT Nano 教程-CSDN博客 2.移植freemodbus master协议栈 在移植了RTT以后,我们需要移植就只有串口相关的函数 移植freemodbus master协议栈具体步骤 下载移植freemodbus master协议栈 源码添加协议栈…

多字段枚举类型定义

如何定义枚举类型&#xff0c;包含两个字段。 public enum TypeNnum {TYPE_1("TYPE_1", 1),TYPE_2("TYPE_2", 2),;private String name;private Integer value;TypeNnum( String name, Integer value) {this.value value;this.name name;}public String…

2024 1.13~1.19 周报

一、本周计划 确定论文题目&#xff0c;重新思考能加的点子&#xff0c;重点在网络架构部分。主要了解了注意力模块如SE、CBAM、CA&#xff0c;在模型中插入注意力模块。读论文。 二、完成情况 2.1 论文题目 基于注意力的Unet盐体全波形反演 想法来源&#xff1a;使用的是二维…

全新AI助手结合GPT4、Dalle3和Midjourney图文创作

MidTool AI助手&#xff08;迷图网(MidTool)-免费ChatGPT中文版和Midjourney的AI绘画聊天软件&#xff09;是一个集成了多种人工智能技术的平台&#xff0c;旨在为用户提供全面的智能服务体验。它融合了GPT-4、DALLE 3和Midjourney等先进的AI工具&#xff0c;每个工具都有其独特…

【LeetCode热题100】【子串】滑动窗口最大值

题目 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1&#xff1a; 输入&#xff1a;nums [1,3,-1,-3,5,3,6,7], …

【方法】如何合并多个PDF文件?

多个PDF文件&#xff0c;想合并成一个文件&#xff0c;要怎么操作呢&#xff1f; 如果PDF文件的数量少&#xff0c;并且页数也不多&#xff0c;可以试试将内容复制黏贴到Word文档&#xff0c;再转为PDF格式&#xff1b;如果文件数量多&#xff0c;页数也多&#xff0c;就不太合…

小白编程题:圣诞礼物

描述 圣诞节就要到了&#xff0c;同学准备了一个超级好玩儿的游戏--代码接力&#xff0c;acmer排成一队。首先&#xff0c;前两名acmer玩游戏。然后失败者走到队尾&#xff0c; 赢得acmer将和下一个acmer比赛&#xff0c;等等。直到有acmer连续赢得n场比赛&#xff0c;则这个…

原型设计 Axure RP 9

Axure RP 9是一款专业的原型设计和协作工具&#xff0c;让用户快速创建高保真度的交互原型&#xff0c;模拟真实的用户界面和交互体验。该软件界面布局合理&#xff0c;易于使用&#xff0c;提供丰富的交互功能和效果&#xff0c;如动态面板、变量、条件逻辑、动画等。同时支持…

边缘计算的挑战和机遇——数据安全与隐私保护

边缘计算的挑战和机遇 边缘计算面临着数据安全与隐私保护、网络稳定性等挑战&#xff0c;但同时也带来了更强的实时性和本地处理能力&#xff0c;为企业降低了成本和压力&#xff0c;提高了数据处理效率。因此&#xff0c;边缘计算既带来了挑战也带来了机遇&#xff0c;需要我…

室内机器人区域覆盖算法仿真测试平台设计与实现(预告)

前一篇&#xff1a; 户外机器人区域覆盖算法仿真测试平台设计与实现&#xff08;预告&#xff09; 基本完全是人工智能生成的内容。 之前此课题只是课程中的一个项目案例。 ROS1云课→32愉快大扫除 但是可以感觉到过于宽泛&#xff0c;没有任何具体实践&#xff0c;比如使用…

MCM备赛笔记——熵权法

Key Concept 熵权法是一种基于信息熵概念的权重确定方法&#xff0c;用于多指标决策分析中。信息熵是度量信息量的不确定性或混乱程度的指标&#xff0c;在熵权法中&#xff0c;它用来反映某个指标在评价过程中的分散程度&#xff0c;进而确定该指标的权重。指标的分散程度越高…

2024年1月19日Arxiv最热CV论文:RAP-SAM: Towards Real-Time All-Purpose Segment Anything

2024年1月19日Arxiv最热CV论文&#xff1a;RAP-SAM: Towards Real-Time All-Purpose Segment Anything 实时全能分割新篇章&#xff0c;谷歌 RAP-SAM模型让一切皆可分割&#xff01; 引言&#xff1a;探索实时全能分割的新篇章 在计算机视觉领域&#xff0c;基于Transformer…

C语言中宏定义中#和##使用详解

目录&#xff09; 一、简介二、使用详解2.1 # 是将后面的字符串加“”变成编译器眼中的字符串2.2 ## 是将两串字符联接成一串 三、其他相关链接1、C语言常用函数详细总结2、C语言中指针、数组作为作为函数参数使用总结3、C语言常见数据类型字节数和打印格式总结4、C语言、Makef…

【办公自动化】python实现图片上传到阿里云OSS

阿里云OSS简介 阿里云对象存储服务(Object Storage Service,简称OSS)是一种高可靠、高可用、安全稳定的云存储服务。它提供了海量、安全、低成本、高可靠的存储服务&#xff0c;适用于各种类型的文件存储需求。 阿里云OSS使用方法 注册阿里云账号并登录&#xff1b; 创建OSS…