区间预测 | Matlab实现LSSVM-ABKDE的最小二乘支持向量机结合自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现LSSVM-ABKDE的最小二乘支持向量机结合自适应带宽核密度估计多变量回归区间预测

目录

    • 区间预测 | Matlab实现LSSVM-ABKDE的最小二乘支持向量机结合自适应带宽核密度估计多变量回归区间预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现LSSVM-ABKDE基于最小二乘支持向量机结合自适应带宽核函数密度估计的多变量回归区间预测(完整源码和数据)
2.LSSVM-ABKDE基于最小二乘支持向量机结合自适应带宽核函数密度估计的多变量回归预测(点预测+概率预测+核密度估计) Matlab语言
3.多变量单输出,包括点预测+概率预测+核密度估计曲线,MatlabR2021a及以上版本运行,提供多种置信区间!评价指标包括R2、MAE、RMSE、MAPE、区间覆盖率picp、区间平均宽度百分比pinaw等。
4.算法新颖,对固定带宽核函数进行了改进。
5.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行main文件一键出图。
6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源处下载Matlab实现LSSVM-ABKDE的最小二乘支持向量机结合自适应带宽核密度估计多变量回归区间预测。
%%  数据导入
res = xlsread("data.xlsx");%%  数据分析
res = rmmissing(res);                        % 删除缺失值
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
%res = res(randperm(num_samples), :);        % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';%%  参数设置
type       = 'f';                % 模型类型f回归,c分类
kernel     = 'RBF_kernel';       % RBF 核函数  
%             poly_kernel        % 多项式核函数 
%             MLP_kernel         % 多层感知机核函数
%             lin_kernel         % 线性核函数
proprecess = 'preprocess';       % 是否归一化
gam = 750;                       % 核函数参数
sig = 25;                        % 惩罚参数%%  建立模型
model = initlssvm(p_train, t_train, type, gam, sig, kernel, proprecess); 
%% *自适应带宽核密度估计
figure;
[y,t,optim_width,~,~,confb95] = ABKDE(Error);
hold on
window=fill([t,fliplr(t)],[confb95(1,:),fliplr(confb95(2,:))],[7 7 7]/8,'FaceAlpha',0.5);
window.EdgeColor = 'none';
plot(t,confb95(1,:),'Color',[7 7 7]/9,'LineWidth',1);
plot(t,confb95(2,:),'Color',[7 7 7]/9,'LineWidth',1);
plot(t,y,'Color',[0.9 0.2 0.2],'LineWidth',2);
[f0,xi0] = ksdensity(Error,'Function','pdf');
plot(xi0,f0,'LineWidth',1.5,'Color',"#7E2F8E");
xlim([min(t) max(t)]);
legend({'95%置信核密度估计曲线','','','优化自适应带宽核密度估计曲线','未优化固定带宽核密度估计曲线'});
grid on;
ylabel('概率密度');
xlabel('预测误差');
set(gca,'TickDir','out'); 
set(gcf,'color','w')for m = 1:length(z)Q1(m) = QuantSol_FUN(t,y,1-z(m));         %  下界Q2(m) = QuantSol_FUN(t,y,z(m));           %  上界
endfor m = 1:length(z)Lower(:,m) = T_sim2 + Q1(m);Upper(:,m) = T_sim2 + Q2(m);
end%% *绘图*
PlotProbability(T_sim2,T_test,numel(T_test),Lower,Upper,0,N,[0 100 0]/255); %概率绘图%% *核密度估计*
time_index = [25;50;75;100]; %确定采样点,注意元素不要超过预测样本的个数!!
num_KD = numel(time_index);
PlotKernelDensity(Lower,Upper,time_index,T_test',num_KD);
set(gcf,'color','w')

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/633306.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爬虫接口获取外汇数据(汇率,外汇储备,贸易顺差,美国CPI,M2,国债利率)

akshare是一个很好用的财经数据api接口,完全免费!!和Tushare不一样。 除了我标题显示的数据外,他还提供各种股票数据,债券数据,外汇,期货,宏观经济,基金,银行…

深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?

深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度? 目录 深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?引言1 数据预处理2 数据集增强3 特征选择4 模型选择5 模型正则化与泛化6 优化器7 学习率8 超…

年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据)

年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据) 目录 年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据) 1.年龄性别预测和识别方法 2.年龄性别预测和识别数据集 3.人脸检测模型 4.年龄性别预测和识别模型训练 &a…

窗口辅助管理工具--Magnet 中文

Magnet是一款窗口管理工具软件,可以帮助用户更高效地组织和管理打开的窗口。它通过简单的拖放操作将窗口捕捉到特定的位置和大小,支持快速将窗口分割成不同的区域,并在屏幕上创建自定义的布局。用户可以选择预设的布局选项,也可以…

密码学学习笔记(二十四):TCP/IP协议栈

TCP/IP协议栈的基础结构包括应用层、传输层、网络层、数据链路层和物理层。 应用层 应用层位于TCP/IP协议栈的最顶层,是用户与网络通信的接口。这一层包括了各种高级应用协议,如HTTP(用于网页浏览)、FTP(用于文件传输…

适用于电脑的 10 款最佳文件恢复软件

由于在线可用选项数量众多,寻找适用于 Windows 11 的最佳文件恢复软件可能会很棘手,但本指南将为您提供有关此主题所需的所有信息。 文件或数据丢失是指意外或无意丢失电子设备上存储的重要数字文件的事件。这可能是由于外部或内部问题造成的&#xff0…

element-ui的el-upload组件实现上传拖拽排序图片顺序(sortablejs)

<template><!-- 省略其他配置 --><el-upload ref"upload" :file-list.sync"fileList"></el-upload></template><script>import Sortable from sortablejs;export default {data() {return {fileList: []};},mounted()…

【数据结构与算法】排序算法:冒泡排序,冒泡排序优化,选择排序、选择排序优化

目录 一、冒泡排序 1、冒泡排序思想 2、冒泡排序算法的性能分析 代码实现&#xff1a; 二、选择排序 1、选择排序思想 2、选择排序算法的性能分析 代码实现&#xff1a; 一、冒泡排序 1、冒泡排序思想 冒泡排序的基本思想是通过相邻元素之间的比较和交换来逐步将最大…

基于springboot+vue的房产销售系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目背景…

UI自动化Selenium 无头模式运行

1、导入浏览器参数设置 from selenium.webdriver.chrome.options import Options 2、创建参数&#xff0c;并使用无厘头模式创建driver对象 opt Options() # 新建参数对象 opt.add_argument("--headless") # 无头 self.driver webdriver.Chrome(optionsopt) …

List详解,线性表

什么是List 在集合框架中&#xff0c;list是一个接口&#xff0c;继承自collection&#xff0c;collection也是接口&#xff0c;继承自Iterable&#xff1b; Iterable是一个接口&#xff0c;表示实现该接口的类是可以逐个元素进行遍历的&#xff0c;如下&#xff1a; 第一个是…

游卡:OceanBase在游戏核心业务的规模化降本实践

从 2023 年 9 月测试 OceanBase&#xff0c;到如今 3 个核心业务应用 OceanBase&#xff0c;国内最早卡牌游戏研发者之一的游卡仅用了两个月。是什么原因让游卡放弃游戏行业通用的 MySQL方案&#xff0c;选择升级至 OceanBase&#xff1f;杭州游卡网络技术有限公司&#xff08;…

密码产品推介 | 沃通安全电子签章系统(ES-1)

产品介绍 沃通安全电子签章系统&#xff08;ES-1&#xff09;是一款基于密码技术、完全自主研发的商用密码产品&#xff0c;严格遵循国家密码管理局制定的相关标准&#xff0c;可为企业和个人提供安全、合规的电子签章功能服务。产品的主要用途是为各类文书、合同、表单等电子…

半波整流电路原理详解+参数与计算公式

什么是半波整流电路&#xff1f; 半波整流电路的基本操作非常简单&#xff0c;输入信号通过二极管&#xff0c;由于只能通过一个方向的电流&#xff0c;二极管的整流作用&#xff0c;单个二极管只允许通过一半的波形。 下图说明了半波整流电路的基本原理。 半波整流电路工作图…

自动驾驶概述

自动驾驶技术主要解决的问题 无人驾驶分级 L1:巡航定速(ACC),巡航装置可以纵向控制车辆,可以加速减速 L2:车道保持辅助,系统可以纵向控制也可以横向控制汽车,但车是辅助,人才是主导。 L2.5:可以提供简单路况下的变道能力,比如特斯拉。 L3:L2的基础上提供变道能力,…

PGSQL主键序列

PostgreSQL和 MySQL数据库还是有一定的区别。 下面了解一下 PGSQL的主键序列。 一、主键 1、系统自带主键序列 在 PostgreSQL 中&#xff0c;GENERATED BY DEFAULT 和 GENERATED ALWAYS 是用于定义自动生成的列&#xff08;Generated Column&#xff09;的选项。一般可作用…

C#根据 App.config 文件中的配置信息去查找并加载指定目录下的 DLL

C#根据 App.config 文件中的配置信息去查找并加载指定目录下的 DLL System.IO.FileNotFoundException:“未能加载文件或程序集“AliNPOIExcel, Version1.0.0.0, Cultureneutral, PublicKeyTokennull”或它的某一个依赖项。系统找不到指定的文件。” 如何让程序识别不同目录下…

Scrcpy:掌握你的Android设备

Scrcpy&#xff1a;掌握你的Android设备 本文将介绍Scrcpy工具&#xff0c;它是一种强大的安卓设备控制工具&#xff0c;可以实现屏幕镜像、操作控制等功能。我们将探讨Scrcpy的基本原理和工作方式&#xff0c;并介绍如何使用Scrcpy连接和控制安卓设备。此外&#xff0c;我们还…

conda环境下wget: command not found解决方案

1 问题描述 window10的conda环境下&#xff0c;运行程序&#xff0c;报如下错误 sh download_model.sh mkdir: cannot create directory ‘data’: File exists download_model.sh: line 4: wget: command not found download_model.sh: line 5: wget: command not found mkd…

基于Prism框架的WPF前端框架开发《知产代理数字化解决方案》

最近新开发了一套WPF前端界面框架&#xff0c;叫《知产代理数字化解决方案》&#xff0c;采用了时下流行的Prism框架作为整个系统的基础架构&#xff0c;演示了Prism中的IRegionManager区域管理器、IDialogAware对话框、IDialogService对话框服务、IContainerExtension容器等用…