『MySQL快速上手』-⑩-索引特性

文章目录

  • 1.索引的作用
  • 2.索引的理解
        • 建立测试表
        • 插入多条记录
        • 查看结果
    • 2.1 MySQL与磁盘交互的基本单位
    • 2.1 为何IO交互要是 Page
    • 2.3 理解单个Page
    • 2.4 理解多个Page
    • 2.5 页目录
    • 2.6 单页情况
    • 2.7 多页情况
    • 2.8 B+ vs B
    • 2.9 聚簇索引 vs 非聚簇索引
      • 非聚簇索引
      • 聚簇索引
  • 3.索引操作
    • 3.1 创建主键索引
    • 3.2 唯一索引的创建
    • 3.3 普通索引的创建
    • 3.4 全文索引的创建
    • 3.5 查询索引
    • 3.6 删除索引
    • 3.7 索引创建原则

在这里插入图片描述

1.索引的作用

提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。

常见的索引分为:

  • 主键索引(primary key)
  • 唯一键索引(unique)
  • 普通索引(index)
  • 全文索引(fulltext)

我们先来看看,加入没有索引,在查询的时候可能出现什么问题?

案例

  • 先整一个海量表,在查询的时候,看看没有索引时有什么问题?
drop database if exists `bit_index`;
create database if not exists `bit_index` default character set utf8;
use `bit_index`;-- 构建一个8000000条记录的数据
-- 构建的海量表数据需要有差异性,所以使用存储过程来创建
-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin
declare chars_str varchar(100) default
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n doset return_str=concat(return_str,substring(chars_str,floor(1+rand()*52),1));set i = i + 1;
end while;
return return_str;
end $$
delimiter ;-- 产生随机数字
delimiter $$
create function rand_num()
returns int(5)
begin
declare i int default 0;
set i = floor(10+rand()*500);
return i;
end $$
delimiter ;-- 创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
set autocommit = 0;
repeat
set i = i + 1;
insert into EMP values ((start+i)
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());
until i = max_num
end repeat;
commit;
end $$
delimiter ;-- 雇员表
create table `EMP`(`empno` int(6) unsigned zerofill NOT NULL COMMENT '雇员编号',`ename` varchar(10) DEFAULT NULL COMMENT '雇员姓名',`job` varchar(9) DEFAULT NULL COMMENT '雇员职位',`mgr` int(4) unsigned zerofill DEFAULT NULL COMMENT '雇员领导编号',`hiredate` datetime DEFAULT NULL COMMENT '雇佣时间',`sal` decimal(7,2) DEFAULT NULL COMMENT '工资月薪',`comm` decimal(7,2) DEFAULT NULL COMMENT '奖金',`deptno` int(2) unsigned zerofill DEFAULT NULL COMMENT '部门编号'
);-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);
  • 现在一个海量数据表已经创建好了。
  • 我们先来查询一下员工编号为998877的员工;
select * from EMP where empno=998877;

在这里插入图片描述

这里我们可以清楚地看到耗时为7.59秒。此时还是在仅有本机一人查询的情况下,在实际项目中,若同时有1000个人并发查询,很有可能死机。

索引能够有效地解决这个问题,我们先看一下效果。

  • 为员工表创建索引
alter table EMP add index(empno);

在这里插入图片描述

  • 换一个员工编号,再次查询;
select * from EMP where empno=123456;

在这里插入图片描述

可以看出,此时查询时间不到0.01秒。

2.索引的理解

建立测试表
create table if not exists user( id int primary key, age int not null, name varchar(16) not null 
);show create table user \G

在这里插入图片描述

插入多条记录

在这里插入图片描述

查看结果

在这里插入图片描述

2.1 MySQL与磁盘交互的基本单位

我们这里就不再详细介绍磁盘,我们直接使用结论:

  • 磁盘的基本单位为一个扇区,大小为512字节;
  • 但是系统软件与磁盘交互的基本单位并非512字节。单次IO为512字节太小,IO单位小,意味着读取同样多的数据内容,需要进行多次的磁盘访问,会带来效率的降低;
  • 在linux文件系统的学习中,我们知道文件系统读取的基本单位不是扇区而是数据块,单位为4KB

而MySQL作为一款应用软件,可以想象成特殊的文件系统。他有着更高的IO场景,所以,为了提高基本的IO效率,MySQL进行IO的基本单位是16KB

show global status like 'innodb_page_size';

在这里插入图片描述
(如图,16384 = 16 * 1024)

也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎使用16KB进行IO交互。即, MySQL 和磁盘进行数据交互的基本单位是16KB 。这个基本数据单元,在 MySQL 这里叫做page

2.1 为何IO交互要是 Page

为何MySQL和磁盘进行IO交互的时候,要采用Page的方案进行交互呢?用多少,加载多少不香吗?

如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO。如果要找id=5,那么就需要5次IO。

但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。

你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部性原理

往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数

2.3 理解单个Page

MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要 先描述,在组织 ,我们目前可以简单理解成一个个独立文件是有一个或者多个Page构成的。

在这里插入图片描述

不同的 Page ,在 MySQL 中,都是16KB ,使用prevnext 构成双向链表因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。

为什么数据库在插入数据时要对其进行排序呢?我们按正常顺序插入数据不是也挺好的吗?

插入数据时排序的目的,就是优化查询的效率。页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询的效率是必须的。

正是因为有序,在查找的时候,从头到后都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是可以提前结束查找过程的。

2.4 理解多个Page

  • 通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据。

  • 如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这效率也太低了。

在这里插入图片描述

2.5 页目录

我们在看《谭浩强C程序设计》这本书的时候,如果我们要看<指针章节>,找到该章节有两种做法:

  • 从头逐页的向后翻,直到找到目标内容;
  • 通过书提供的目录,发现指针章节在234页(假设),那么我们便直接翻到234页。

同时,查找目录的方案,可以顺序找,不过因为目录肯定少,所以可以快速提高定位。本质上,书中的目录,是多花了纸张的,但是却提高了效率所以,目录,是一种“空间换时间的做法”。

2.6 单页情况

针对上面的单页Page,我们能否也引入目录呢?当然可以。

在这里插入图片描述
那么当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。

现在我们可以再次正式回答上面的问题了,为何通过键值 MySQL 会自动排序?

  • 可以很方便引入目录;

2.7 多页情况

MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下所有的数据,那么必定会有多个页来存储数据。

在这里插入图片描述
在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针的方式,将所有的Page组织起来。

需要注意,上面的图,是理想结构,大家也知道,目前要保证整体有序,那么新插入的数据,不一定会在新Page上面,这里仅仅做演示。

这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。

那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录

  • 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。

  • 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。

  • 其中,每个目录项的构成是:键值+指针。图中没有画全。

在这里插入图片描述
存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。

其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。

可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担心,可以在加目录页。

在这里插入图片描述

如图可以直观地看出,这就是B+树。至此,我们已经给我们的表user构建完了主键索引。

随便找一个id=?我们发现,现在查找的Page数一定减少了,也就意味着IO次数减少了,那么效率也就提高了。

InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?

  • 链表:线性遍历;

  • 二叉搜索树:退化问题,可能退化成为线性结构;

  • AVL &&红黑树:虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体过高,大家都是自顶向下找,层高越低,意味着系统与硬盘更少的IO Page交互;

  • Hash:官方的索引实现方式中, MySQL 是支持HASH的,不过 InnoDB 和 MyISAM 并不支持.Hash跟进其算法特征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行。

2.8 B+ vs B

B树

在这里插入图片描述

B+树

在这里插入图片描述

两种树的区别在于:

  • B树节点,既有数据,又有Page指针,而B+,只有叶子节点有数据,其他目录页,只有键值和Page指针;
  • B+叶子节点,全部相连,而B没有;

为何选择B+树

  • 节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少
  • 叶子节点相连,更便于进行范围查找;

2.9 聚簇索引 vs 非聚簇索引

MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM表的主索引, Col1 为主键。

在这里插入图片描述

其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。

相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的。

非聚簇索引

create database myisam_test;
use myisam_test;
create table mytest( id int primary key, name varchar(11) not null )engine=MyISAM;

在这里插入图片描述

ls /var/lib/mysql/myisam_test/ -l

在这里插入图片描述

其中, MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引

聚簇索引

create database innodb_test;
use innodb_test;
create table mytest( id int primary key, name varchar(11) not null )engine=InnoDB;

在这里插入图片描述

ls /var/lib/mysql/innodb_test/ -l

在这里插入图片描述
其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引

当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这种索引可以叫做辅助(普通)索引。

对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。

下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别。

在这里插入图片描述
同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助索引如下图:

在这里插入图片描述

可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。

所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。这种过程,就叫做回表查询为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?原因就是太浪费空间了。

3.索引操作

3.1 创建主键索引

  • 第一种方式;
-- 在创建表的时候,直接在字段名后指定 primary key
create table user1(id int primary key, name varchar(30));

在这里插入图片描述

  • 第二种方式;
-- 在创建表的最后,指定某列或某几列为主键索引
create table user2(id int, name varchar(30), primary key(id));

在这里插入图片描述

  • 第三种方式;
create table user3(id int, name varchar(30));
-- 创建表以后再添加主键
alter table user3 add primary key(id);

在这里插入图片描述

主键索引的特点

  • 一个表中,最多有一个主键索引,当然可以使符合主键;
  • 主键索引的效率高(主键不可重复);
  • 创建主键索引的列,它的值不能为null,且不能重复;
  • 主键索引的列基本上是int;

3.2 唯一索引的创建

  • 第一种方式;
-- 在表定义时,在某列后直接指定unique唯一属性。
create table user4(id int primary key, name varchar(30) unique);
  • 第二种方式;
-- 创建表时,在表的后面指定某列或某几列为unique
create table user5(id int primary key, name varchar(30), unique(name));
  • 第三种方式;
create table user6(id int primary key, name varchar(30));
alter table user6 add unique(name);

唯一索引的特点

  • 一个表中,可以有多个唯一索引
  • 查询效率高;
  • 如果在某一列建立唯一索引,必须保证这列不能有重复数据;
  • 如果一个唯一索引上指定not null,等价于主键索引;

3.3 普通索引的创建

  • 第一种方式;
create table user8(id int primary key,
name varchar(20),
email varchar(30),
index(name) --在表的定义最后,指定某列为索引
);
  • 第二种方式;
create table user9(id int primary key, name varchar(20), email
varchar(30));
alter table user9 add index(name); --创建完表以后指定某列为普通索引
  • 第三种方式;
create table user10(id int primary key, name varchar(20), email
varchar(30));
-- 创建一个索引名为 idx_name 的索引
create index idx_name on user10(name);

普通索引的特点

  • 一个表中可以有多个普通索引,普通索引在实际开发中用的比较多;
  • 如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引;

3.4 全文索引的创建

当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有要求,要求表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进行全文检索,可以使用sphinx的中文版(coreseek)。

CREATE TABLE articles (id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,title VARCHAR(200),body TEXT,FULLTEXT (title,body)
)engine=MyISAM;
INSERT INTO articles (title,body) VALUES('MySQL Tutorial','DBMS stands for DataBase ...'),('How To Use MySQL Well','After you went through a ...'),('Optimizing MySQL','In this tutorial we will show ...'),('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),('MySQL vs. YourSQL','In the following database comparison ...'),('MySQL Security','When configured properly, MySQL ...');

查询有没有database数据

如果使用如下查询方式,虽然查询出数据,但是没有使用到全文索引;

select * from articles where body like '%database%';

在这里插入图片描述
可以用explain工具看一下,是否使用到索引;

explain select * from articles where body like '%database%'\G

在这里插入图片描述
(key为null表示没有用到索引)

  • 如何使用全文索引呢?
SELECT * FROM articles WHERE MATCH (title,body) AGAINST ('database');

在这里插入图片描述
通过explain来分析这个sql语句;

在这里插入图片描述

3.5 查询索引

  • 第一种方法:
 show keys from 表名;
  • 第二种方法:
show index from 表名;
  • 第三种方法:
 desc 表名;

3.6 删除索引

  • 删除主键索引;
alter table 表名 drop primary key;
  • 其他索引的删除;
 alter table 表名 drop index 索引名;
  • 第三种方法;
drop index 索引名 on 表名

3.7 索引创建原则

  • 比较频繁作为查询条件的字段应该创建索引;
  • 唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件;
  • 更新非常频繁的字段不适合作创建索引;
  • 不会出现在where子句中的字段不该创建索引;

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/632753.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pytest + allure(windows)安装

背景 软硬件环境&#xff1a; windows11&#xff0c;已安装anaconda&#xff0c;python&#xff0c;pycharm用途&#xff1a;使用pytest allure 生成报告allure 依赖java&#xff0c;点击查看java安装教程 allure 下载与安装 从 allure下载网址下载最新版本.zip文件 放在自…

基于YOLOv8深度学习的葡萄簇目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

【llm 微调code-llama 训练自己的数据集 一个小案例】

这也是一个通用的方案&#xff0c;使用peft微调LLM。 准备自己的数据集 根据情况改就行了&#xff0c;jsonl格式&#xff0c;三个字段&#xff1a;context, answer, question import pandas as pd import random import jsondata pd.read_csv(dataset.csv) train_data data…

pyspark 笔记:窗口函数window

窗口函数相关的概念和基本规范可以见&#xff1a;pyspark笔记&#xff1a;over-CSDN博客 1 创建Pyspark dataFrame from pyspark.sql.window import Window import pyspark.sql.functions as F employee_salary [("Ali", "Sales", 8000),("Bob&qu…

USACO介绍 报名流程 成绩查询方式详解(文末有备赛资料)

USACO美国计算机奥林匹克活动 2023-2024新赛季的时间线安排是怎么样的&#xff1f; 2023-2024USACO竞赛时间 一般来说&#xff0c;USACO竞赛时间在12月-3月期间&#xff0c;每月都有一场比赛每次3-5小时&#xff0c;并在规定时间内完成3-4道题。23-24年USACO竞赛时间安排如下&a…

uniapp h5 生成 ubuntu桌面程序 并运行方法

uniapp h5 生成 ubuntu桌面程序 并运行方法,在window环境下开发&#xff0c;发布到ubuntu桌面&#xff0c;并运行 1、安装Nodejs 安装包官方下载地址&#xff1a;https://www.nodejs.com.cn/ 安装完后cmd&#xff0c;如图&#xff0c;即安装成功 2、通过Nodejs安装 electron…

[flutter]GIF速度极快问题的两种解决方法

原因&#xff1a; 当GIF图没有设置播放间隔时间时&#xff0c;电脑上会默认间隔0.1s&#xff0c;而flutter默认0s。 解决方法一&#xff1a; 将图片改为webp格式。 解决方法二&#xff1a; 为图片设置帧频率&#xff0c;添加播放间隔。例如可以使用GIF依赖组件设置每秒运行…

【音视频】基于NGINX如何播放rtmp视频流

背景 现阶段直播越来越流行&#xff0c;直播技术发展也越来越快。Webrtc、rtmp、rtsp是比较火热的技术&#xff0c;而且应用也比较广泛。本文通过实践来展开介绍关于rtmp如何播放。 概要 本文重点介绍基于NGINX如何播放rtmp视频流 正文 1、构造rtsp视频流 可以参考上一篇…

Cacti 前台SQL注入漏洞复现(CVE-2023-39361)

0x01 产品简介 Cacti 是一套基于 PHP,MySQL,SNMP 及 RRDTool 开发的网络流量监测图形分析工具。 0x02 漏洞概述 该漏洞存在于graph_view.php文件中。默认情况下,访客用户无需身份验证即可访问graph_view.php,在启用情况下使用时会导致SQL注入漏洞。 攻击者可能利用此漏洞…

HCIP-7

IPV6: 为什么使用IPV6&#xff1a; V4地址数量不够V4使用NAT&#xff0c;破坏了端到端原则 IPV6的优点&#xff1a; 全球单播地址聚合性强&#xff08;IANA组织进行合理的分配&#xff09;多宿主----一个接口可以配置N个地址--且这些地址为同一级别自动配置---1&#xff09;…

IPhone、IPad、安卓手机、平板以及鸿蒙系统使用惠普无线打印教程

演示机型&#xff1a;惠普M281fdw&#xff0c;测试可行机型&#xff1a;惠普M277&#xff0c;惠普M452、惠普M283 点击右上角图标。 点击WI-FI Direct 开&#xff0c;(如果WI-FI Direct关闭&#xff0c;请打开&#xff01;) 记录打印机的wifi名称(SSID)和密码。 打开IPhone、I…

django后台进行加密手机号字段,加密存储,解密显示

需求: 1 &#xff1a;员工在填写用户的手机号时&#xff0c;直接填写&#xff0c;在django后台中输入 2&#xff1a;当员工在后台确认要存储到数据库时&#xff0c;后台将会把手机号进行加密存储&#xff0c;当数据库被黑之后&#xff0c;手机号字段为加密字符 3&#xff1a;员…

AD导出BOM表 导出PDF

1.Simple BOM: 这种模式下&#xff0c;最好在pcb界面&#xff0c;这样的导出的文件名字是工程名字&#xff0c;要是在原理图界面导出&#xff0c;会以原理图的名字命名表格。 直接在菜单栏 报告->Simple BOM 即可导出物料清单&#xff0c;默认导出 comment pattern qu…

253:vue+openlayers 加载HERE多种地图(v2软件版本)

第253个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+openlayers中添加HERE地图,并且含多种的表现形式。包括地图类型,文字标记的设置、语言的选择、PPI的设定。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果 文章目录 示例效果图配置方式示例源…

2023年移远车载全面开花,智能座舱加速进击

作为汽车智能化的关键组件&#xff0c;车载模组正发挥着越来越重要的作用。 移远通信进入车载模组领域近十年&#xff0c;已形成了完善的车载产品队列&#xff0c;不但在5G/4G车载通信、智能座舱、C-V2X车路协同等领域打造了一枝独秀的产品线&#xff0c;也推出了车规级Wi-Fi/蓝…

LaWGPT安装和使用教程的复现版本【细节满满】

文章目录 前言一、下载和部署1.1 下载1.2 环境安装1.3 模型推理 总结 前言 LaWGPT 是一系列基于中文法律知识的开源大语言模型。该系列模型在通用中文基座模型&#xff08;如 Chinese-LLaMA、ChatGLM等&#xff09;的基础上扩充法律领域专有词表、大规模中文法律语料预训练&am…

【FastAPI】请求体

在 FastAPI 中&#xff0c;请求体&#xff08;Request Body&#xff09;是通过请求发送的数据&#xff0c;通常用于传递客户端提交的信息。FastAPI 使得处理请求体变得非常容易。 请求体是客户端发送给 API 的数据。响应体是 API 发送给客户端的数据 注&#xff1a;不能使用 …

2024年回炉计划之排序算法(一)

算法是计算机科学和信息技术中的重要领域&#xff0c;涉及到问题求解和数据处理的方法。要学习算法&#xff0c;你可能需要掌握以下一些基本知识&#xff1a; 基本数据结构&#xff1a; 了解和熟练使用各种数据结构&#xff0c;如数组、链表、栈、队列、树和图等。数据结构是算…

Java导出Excel并合并单元格

需求&#xff1a;需要在导出excel时合并指定的单元格 ruoyi excel 项目基于若伊框架二次开发&#xff0c;本着能用现成的就不自己写的原则&#xff0c;先是尝试了Excel注解中needMerge属性 /*** 是否需要纵向合并单元格,应对需求:含有list集合单元格)*/public boolean needMer…

4人遇难,北京突发火情 富维烟火识别防止悲剧再次发生

在北京一处居民区&#xff0c;一场突如其来的火灾夺走了四条宝贵的生命。火情迅速蔓延&#xff0c;烟雾弥漫&#xff0c;居民们猝不及防。这一悲剧再次提醒我们&#xff0c;火灾预防和早期识别的重要性不容忽视。 在这样的背景下&#xff0c;北京富维图像公司开发的FIS智能图像…