CVPR-2021
github:https://github.com/Andrew-Qibin/CoordAttention
文章目录
- 1 Background and Motivation
- 2 Related Work
- 3 Advantages / Contributions
- 4 Method
- 5 Experiments
- 5.1 Datasets and Metrics
- 5.2 Ablation Studies
- 5.3 Comparison with Other Methods
- 5.4 Applications
- 6 Conclusion
1 Background and Motivation
SENet(【SENet】《Squeeze-and-Excitation Networks》) 注意力忽视了 position information
作者 embedding positional information into channel attention,采用 two 1D feature encoding processes,提出 coordinate attention,direction-aware and position-sensitive
2 Related Work
- Mobile Network Architecture
- Attention Mechanisms
3 Advantages / Contributions
- 设计提出轻量级 Coordinate Attention,兼顾 channel 和 spatial
- 在分类 / 目标检测 / 分割 benchmarks 上验证了其有效性
4 Method
SE / CBAM / CA 结构对比
CBAM 虽然有 spatial attention,但是 fail in modeling long-range dependencies that are essential for vision tasks
下面看看 CA 的公式表达
结合代码看看
import torch
import torch.nn as nn
import math
import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, oup, reduction=32):super(CoordAtt, self).__init__()self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.size()x_h = self.pool_h(x) #(n, c, h, 1)x_w = self.pool_w(x).permute(0, 1, 3, 2) #(n, c, 1, w)-> (n, c, w, 1) 注意这里转化成和 x_h 一样的排列形式了y = torch.cat([x_h, x_w], dim=2) # 方便拼一起,conv->bn->acty = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) # 再拆开x_w = x_w.permute(0, 1, 3, 2) # 这里转化回去了a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out
在网络中的插入位置,以 mobileNetV2(【MobileNet V2】《MobileNetV2:Inverted Residuals and Linear Bottlenecks》) 和 MobileNeXt 为例
5 Experiments
5.1 Datasets and Metrics
- ImageNet:Top-1 Acc
- COCO:mAP
- Cityscapes:mIoU
5.2 Ablation Studies
(1)Importance of coordinate attention
相比于仅水平或者竖直方向的 spatial attention,合起来最猛
(2)Different weight multipliers
0.25,0.75,1.0 均有一致性的提升
比 NAS 出来的 MobileNeXt + SE 都猛
AutoML 时代,提点的方式之一,加新的原料,加 search space 中的素材
(3)The impact of reduction ratio r
猛,均有提升
5.3 Comparison with Other Methods
(1)Attention for Mobile Networks
capture long-range dependencies among spatial locations that are essential for vision tasks
(2)Stronger Baseline
5.4 Applications
(1) Object Detection
COCO 和 VOC 都有提升
(2) Semantic Segmentation
比 CBAM 猛
6 Conclusion
来自:注意力的理解心得