2024美赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/631612.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis数据安全(一)数据持久化

一、Redis数据安全措施: 1、将数据持久化至硬盘 2、将数据复制至其他机器&#xff1b; 复制是在数据持久化的基础上进行的。 二、将数据持久化至硬盘 1、介绍&#xff1a;Redis是一个基于内存的数据库&#xff0c;它的数据是存放在内存中&#xff0c;内存有个问题就是关闭…

Python中使用HTTP代理进行网络请求

在Python中&#xff0c;HTTP代理是一种常用的技术&#xff0c;用于控制和修改HTTP请求和响应。通过使用HTTP代理&#xff0c;我们可以更好地控制网络请求的行为&#xff0c;提高安全性、隐私性和效率。下面我们将详细介绍如何在Python中使用HTTP代理进行网络请求。 一、HTTP代…

风丘科技为您提供完整的ADAS测试方案

一 方案概述 随着5G通讯与互联网的快速发展&#xff0c;智能汽车和ADAS辅助系统的研究与发展在世界范围内也在如火如荼地进行。风丘科技紧跟时代脚步&#xff0c;经多年积累沉淀&#xff0c;携手整车厂与高校共同研发打造出了一套完整且适用于国内ADAS测试的系统方案。 | ADAS…

sql中的explain关键字用法

在SQL中&#xff0c;使用EXPLAIN关键字可以获取查询的执行计划&#xff0c;以便进行性能优化和查询调优。执行计划提供了关于查询操作的详细信息&#xff0c;涵盖了多个表头字段&#xff0c;每个字段都提供了特定的信息。以下是explain表头字段解释&#xff1a; id&#xff1…

工厂企业消防安全AI可视化视频智能监管解决方案

一、方案背景 2023年11月20日下午6时30分许&#xff0c;位于江苏省无锡市惠山区前洲街道的某公司突发严重火灾&#xff0c;共造成7人死亡。这次火灾提醒我们工业安全至关重要&#xff0c;企业都应该时刻保持警惕&#xff0c;加强安全意识和培训&#xff0c;提高应对突发事件的…

vue实现 marquee(走马灯)

样式 代码 <div class"marquee-prompt"><div class"list-prompt" refboxPrompt><span v-for"item in listPrompt" :title"item" class"prompt">{{item}}</span></div> </div>data() {…

【分布式监控】zabbix与grafana连接

1.在zabbix- server服务端安装grafana&#xff0c;并启动服务 先在官网下载软件 https://grafana.com/grafana/download/9.4.7?editionenterprise&pggraf&plcmtdeploy-box-1#可以翻译成中文介绍&#xff0c;很详细的教程 yum install -y https://dl.grafana.com/ent…

PDF转PowerPoint - Java实现方法

通过编程实现PDF转PPT的功能&#xff0c;可以自动化转换过程&#xff0c;减少手动操作的工作量&#xff0c;并根据需要进行批量转换。将PDF文件转换为PPT文档后&#xff0c;可以利用PPT的丰富功能和动画效果&#xff0c;达到更好的演示效果。 在Java中&#xff0c;我们可以使用…

100天精通鸿蒙从入门到跳槽——第5天:TypeScript 知识储备:函数

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通Golang》…

群晖NAS搭建WebDav结合内网穿透实现公网访问本地影视资源

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

酒类销售新模式:让用户成为你的“免费“推销员!

随着市场的不断变化&#xff0c;传统的销售模式已经无法满足消费者的需求。如何创新商业模式&#xff0c;提高销售量&#xff0c;成为了酒类企业面临的重要问题。最近&#xff0c;一种新型的酒类销售模式悄然兴起&#xff0c;该模式以"利己"和"利他"为核心…

用sdkman在linux上管理多个java版本

概述&#xff1a; SDKMAN 是一个用于管理软件开发工具的工具&#xff0c;允许您轻松地安装、升级和切换不同版本的 JDK、Maven、Gradle 等工具。以下是在 Linux 上安装 SDKMAN! 的基本步骤&#xff1a; 安装SdkMan 使用 curl 安装 SDKMAN!: 打开终端&#xff0c;并运行以下命…

axios的原理及源码解析

面试官&#xff1a;你了解axios的原理吗&#xff1f;有看过它的源码吗&#xff1f; 一、axios的使用 关于axios的基本使用&#xff0c;上篇文章已经有所涉及&#xff0c;这里再稍微回顾下&#xff1a; 发送请求 import axios from axios;axios(config) // 直接传入配置 axio…

web3.0基本概念简析

web3.0概念简析 web3.0的发展史 web1.0 仅用于展示&#xff0c;无法进行点赞评论等交互 web2.0 不仅可以展示&#xff0c;还可以上传视频、图片等&#xff0c;用户可以参与创作内容并获取收益。但还是中心化的模型 缺点 1 机械化的人机验证 2 账户安全无法保证 多年未登陆…

Elasticsearch8 集群搭建(二)配置篇:(1)节点和集群配置

安装完Elasticsearch后&#xff0c;需要对其进行配置&#xff0c;包括以下几部分&#xff1a;节点和集群配置、系统配置、安全配置。 此篇记录节点和集群配置的内容&#xff0c;后续将更新系统配置和安全配置。 节点和集群配置&#xff1a; 通过编辑/usr/local/elasticsearc…

跨站点请求伪造攻击 - Cross Site Request Forgery (CSRF)

什么是CSRF 最好理解CSRF攻击的方式是看一个具体的例子。 假设你的银行网站提供一个表单,允许当前登录用户将钱转账到另一个银行账户。例如,转账表单可能如下所示: <form method="post"action="/transfer"> <

Tensorflow2.0笔记 - 基础数学运算

本笔记主要记录基于元素操作的,-,*,/,//,%,**,log,exp等运算&#xff0c;矩阵乘法运算&#xff0c;多维tensor乘法相关运算 import tensorflow as tf import numpy as nptf.__version__#element-wise运算&#xff0c;对应元素的,-,*,/,**,//,% tensor1 tf.fill([3,3], 4) ten…

虚化边框背景,让视频不再单调乏味

在繁忙的都市中&#xff0c;我们每天都在为了生活而奔波。有时&#xff0c;我们希望有一个地方&#xff0c;可以让我们暂时远离喧嚣&#xff0c;沉浸在自己的小世界里。而现在&#xff0c;有了这款全新的视频编辑软件——视频剪辑高手&#xff0c;你不仅可以轻松制作出专业级的…

Docker篇之修改docker默认磁盘占用目录

一、前言 通常情况下&#xff0c;当我们默认安装docker服务时&#xff0c;在不指定默认存储路径时&#xff0c;docker会自动创建目录&#xff0c;经常会出现打满根目录的情况。 默认存储路径为&#xff1a;/var/lib/docker 下 可通过如下进行查询&#xff1a; docker info输出…

易飞ERP抛转钉钉签核,并自动审核易飞单据

支持易飞ERP所有单据送签到钉钉 &#xff08;v: rainholy&#xff09; 1、钉钉界面 2、易飞ERP单据配置 3、钉钉审批完后&#xff0c;自动审核易飞ERP单据