二叉查找树(binary search tree)(难度7)

C++数据结构与算法实现(目录)

答案在此:二叉查找树(binary search tree)(答案)

写在前面

部分内容参《算法导论》

基本接口实现

1 删除

删除值为value的第一个节点

删除叶子节点1

删除叶子节点1

(3)删除叶子节点1

删除有两个孩子的节点z

分成下面几个步骤进行:

1 找到z的后继,y是z的后继。这时候可以确定y是不可能有左孩子的。

2 删除y,让y的右孩子x取代自己的位置。删除只有一个孩子的节点上面已经讨论过。

3 让y的值覆盖z的值。

待实现代码

#pragma once
#include <algorithm>
#include <list>
#include <iostream>
#include <stack>
#include <queue>
#include <cstdlib>
#include <ctime>
#include <string>
#include <cassert>
#include <map>
#include <sstream>
using namespace std;//------下面的代码是用来测试你的代码有没有问题的辅助代码,你无需关注------
#include <algorithm>
#include <cstdlib>
#include <iostream> 
#include <vector>
#include <utility>
using namespace std;
struct Record { Record(void* ptr1, size_t count1, const char* location1, int line1, bool is) :ptr(ptr1), count(count1), line(line1), is_array(is) { int i = 0; while ((location[i] = location1[i]) && i < 100) { ++i; } }void* ptr; size_t count; char location[100] = { 0 }; int line; bool is_array = false; bool not_use_right_delete = false; }; bool operator==(const Record& lhs, const Record& rhs) { return lhs.ptr == rhs.ptr; }std::vector<Record> myAllocStatistic; void* newFunctionImpl(std::size_t sz, char const* file, int line, bool is) { void* ptr = std::malloc(sz); myAllocStatistic.push_back({ ptr,sz, file, line , is }); return ptr; }void* operator new(std::size_t sz, char const* file, int line) { return newFunctionImpl(sz, file, line, false); }void* operator new [](std::size_t sz, char const* file, int line)
{return newFunctionImpl(sz, file, line, true);
}void operator delete(void* ptr) noexcept { Record item{ ptr, 0, "", 0, false }; auto itr = std::find(myAllocStatistic.begin(), myAllocStatistic.end(), item); if (itr != myAllocStatistic.end()) { auto ind = std::distance(myAllocStatistic.begin(), itr); myAllocStatistic[ind].ptr = nullptr; if (itr->is_array) { myAllocStatistic[ind].not_use_right_delete = true; } else { myAllocStatistic[ind].count = 0; }std::free(ptr); } }void operator delete[](void* ptr) noexcept { Record item{ ptr, 0, "", 0, true }; auto itr = std::find(myAllocStatistic.begin(), myAllocStatistic.end(), item); if (itr != myAllocStatistic.end()) { auto ind = std::distance(myAllocStatistic.begin(), itr); myAllocStatistic[ind].ptr = nullptr; if (!itr->is_array) { myAllocStatistic[ind].not_use_right_delete = true; } else { myAllocStatistic[ind].count = 0; }std::free(ptr); } }
#define new new(__FILE__, __LINE__)
struct MyStruct { void ReportMemoryLeak() { std::cout << "Memory leak report: " << std::endl; bool leak = false; for (auto& i : myAllocStatistic) { if (i.count != 0) { leak = true; std::cout << "leak count " << i.count << " Byte" << ", file " << i.location << ", line " << i.line; if (i.not_use_right_delete) { cout << ", not use right delete. "; }	cout << std::endl; } }if (!leak) { cout << "No memory leak." << endl; } }~MyStruct() { ReportMemoryLeak(); } }; static MyStruct my; void check_do(bool b, int line = __LINE__) { if (b) { cout << "line:" << line << " Pass" << endl; } else { cout << "line:" << line << " Ohh! not passed!!!!!!!!!!!!!!!!!!!!!!!!!!!" << " " << endl; exit(0); } }
#define check(msg)  check_do(msg, __LINE__);
//------上面的代码是用来测试你的代码有没有问题的辅助代码,你无需关注------template<typename T>
class binary_search_tree
{
private:struct tree_node//OK{tree_node() :data(T()){}tree_node(const T& t) :data(t){}bool exist_parent(void) const { return parent != nullptr; }T data;tree_node* parent = nullptr;tree_node* left = nullptr;tree_node* right = nullptr;};
public:binary_search_tree(void) :m_root(nullptr) {}//默认构造函数:什么也不需要做,因为成员定义的时候就已经初始化了binary_search_tree(const T*, const int);//从数组构造一颗二叉树binary_search_tree(const binary_search_tree&);//拷贝构造函数binary_search_tree& operator = (const binary_search_tree&);~binary_search_tree(void) { clear(); }//析构函数
public:int size(void) const;//元素数量bool empty(void) const { return size() == 0; }//二叉树是否为空bool insert(const T& data);//插入一个元素T minmum(void) const;//最小值T maxmum(void) const;//最大值bool exists(const T& data) const;//判断元素是否存在void clear(void);//非递归清空二叉树void erase(const T& data);template<typename T>friend ostream& operator<<(ostream& out, const binary_search_tree<T>& tree);//输出二叉树void print_pre_order_nonrecursive(void) const;//非递归:先序遍历输出二叉树void print_in_order_nonrecursive(void) const;//非递归:中序遍历输出二叉树void print_post_order_nonrecursive(void) const;//非递归:后续遍历输出二叉树void print_in_order_recursive(std::ostream& os) const;//递归中序遍历输出二叉树void print_element_order(void) const;//非递归按元素顺序输出二叉树std::string to_string_in_order(void) const;int max_length_between_node(void) const;//最大节点距离int hight(void) const;//树高度bool operator==(const binary_search_tree& other) const;//两个树相等:结构相同,对应元素相同bool operator!=(const binary_search_tree& other) const { return !equal(other); }//两个树不相等bool equal(const binary_search_tree& other) const;//两个树相等:结构相同,对应元素相同
private:void print_binary_tree(ostream&, const tree_node* bt, int depth) const;//二叉树形式打印二叉树tree_node* find(const T& data);//查找tree_node* maxmum(tree_node*) const;//最大节点tree_node* minmum(tree_node*) const;//最小节点tree_node* successor(tree_node* t) const;//后继节点//节点的深度与高度:对于树中相同深度的每个结点来说,它们的高度不一定相同,这取决于每个结点下面的叶结点的深度int hight(const tree_node* _t) const;bool equal(const tree_node* lhs, const tree_node* rhs) const;//两个树相等:结构相同,对应元素相同bool is_node_leaf(const tree_node* node) const;bool is_left_child(const tree_node* parent, const tree_node* node);bool is_leaf_node_equal(const tree_node* lhs, const tree_node* rhs) const;void copy(const binary_search_tree& other);void copy_node_from(tree_node*& dest, tree_node* dest_parent, const tree_node* from);void print_in_order_recursive(std::ostream& os, const tree_node* node) const;//递归中序遍历输出二叉树void erase_node(tree_node*& pnode);//参数是引用类型,主要是为了:erase_node(m_root) 时,更新m_root;void erase_and_reconnect(tree_node*& pnode, tree_node* pnode_child);void update_parent(tree_node* pnode);//删除叶子结点后,让父节点指向空指针
private:tree_node* left(tree_node* p){assert(p != nullptr);return p->left;}
private:tree_node* m_root = nullptr;//OKint m_size = 0;
};
template<typename T>
std::string binary_search_tree<T>::to_string_in_order(void) const
{std::stringstream oss;this->print_in_order_recursive(oss);auto str = oss.str();return str;
}
template<typename T>
binary_search_tree<T>::binary_search_tree(const T* arr, const int length) : binary_search_tree()
{//(4) your code //可以使用成员函数insert(const T& data) 来实现这个函数
}
template<typename T>
inline binary_search_tree<T>::binary_search_tree(const binary_search_tree & from) :m_root(nullptr)
{//(5) your code //可以使用成员函数copy来实现
}
template<typename T>
binary_search_tree<T>& binary_search_tree<T>::operator=(const binary_search_tree & from)
{//(5) your code //可以使用成员函数copy来实现。//从这里可以看出copy函数应该先用clear成员函数清空自己原有的全部节点return *this;
}
template<typename T>
void binary_search_tree<T>::copy(const binary_search_tree& other)
{if (this == &other)//如果拷贝自己,则什么也不做{return;//直接返回}clear();//先清空自己的内容m_size = other.m_size;//成员变量赋值if (other.m_root)//从根节点开始拷贝;递归的拷贝二叉树的每一个节点,照葫芦画瓢{copy_node_from(m_root/*需要被创建的节点*/, nullptr/*需要被创建的节点的父节点:用户指向孩子*/, other.m_root/*提供节点存储的数据*/);}
}
template<typename T>
bool binary_search_tree<T>::insert(const T& data)
{if (m_root != nullptr){tree_node *fast, *slow, *ptemp;fast = slow = ptemp = m_root;while (fast != 0){slow = fast;if (data < slow->data){fast = slow->left;}else if (data > slow->data){fast = slow->right;}else//esle equal do nothing 元素不允许重复//,元素如果已经存在,什么也不做{fast = 0;return false;//直接退出,不再插入相同的元素的}}if (data < slow->data){slow->left = new tree_node(data);slow->left->parent = slow;}else if (data > slow->data){slow->right = new tree_node(data);slow->right->parent = slow;}else{return false;}//esle equal do nothing}else{m_root = new tree_node(data);}++m_size;return true;
}
template<typename T>
int binary_search_tree<T>::hight(void) const
{return hight(m_root);
}
template<typename T>
int binary_search_tree<T>::hight(const tree_node* _t) const
{//树的高度,也是树的层树,最大层的层数就是树的高度//(7) your code 如果没有元素,返回0// 如果只有一个根节点,没有孩子节点高度为1// 如果有孩子节点,树的高度就 = 1 + 孩子节点的高度(左右子树高度较大的那一个)return -1;
}
template<typename T>
bool binary_search_tree<T>::operator==(const binary_search_tree & other) const
{return this->equal(other);//两个二叉树相等,当且仅当两颗树长的一模一样
}
template<typename T>
bool binary_search_tree<T>::equal(const binary_search_tree & other) const
{return equal(m_root, other.m_root);
}
template<typename T>
bool binary_search_tree<T>::equal(const tree_node* lhs, const tree_node* rhs) const
{// 先判断两个树是否为空//再判断两个树是否都是叶子节点  可以使用 is_leaf_node_equal 成员函数//再判断两个树的两个左右子树是否同时相等  可以递归调用当前equal函数//(8) your codereturn false;
}
template<typename T>
inline bool binary_search_tree<T>::is_leaf_node_equal(const tree_node* lhs, const tree_node* rhs) const
{if (is_node_leaf(lhs) && is_node_leaf(rhs)){return lhs->data == rhs->data;}return false;
}
template<typename T>
inline bool binary_search_tree<T>::is_node_leaf(const tree_node * node) const
{return node != nullptr && node->left == nullptr && node->right == nullptr;
}template<typename T>
///*需要被创建的节点*/, nullptr/*需要被创建的节点*/, other.m_root/*提供节点存储的数据*/
void binary_search_tree<T>::copy_node_from(tree_node *& dest, tree_node* dest_parent, const tree_node * from)
{//(9) your code 深度拷贝from节点,并切递归拷贝,从而完成整棵树的拷贝//注意dest节点传递的是引用,这意味着你可以非常方便的对这个地址变量赋值,赋值就会修改传进来的外部变量//改函数使用递归调用自己的方式,完成整棵树的拷贝。注意对左子树和又子树可能需要分别调用一次递归函数才能完成。}template<typename T>
int binary_search_tree<T>::max_length_between_node(void) const
{int max_length = 0;const tree_node* ptree = m_root;list<tree_node*> listNode;listNode.push_back(m_root);while (!listNode.empty()){auto pnode = listNode.front();listNode.pop_front();if (pnode->left != nullptr){listNode.push_back(pnode->left);}if (pnode->right != nullptr){listNode.push_back(pnode->right);}int tempBetween = hight(pnode->left) + hight(pnode->right);max_length = std::max<int>(tempBetween, max_length);}return max_length;
}
template<typename T>
void binary_search_tree<T>::clear(void)
{//使用一个辅助队列(或者栈),层次遍历删除所有节点。//遍历到一个节点A就把孩子BC放到队列,并把这个节点A从队列里取出释放//(10) your code}
template<typename T>
void binary_search_tree<T>::print_binary_tree(ostream& out, const tree_node* bt, int depth) const
{//用右左孩子的方式输出一颗树,先输出右孩子后输出左孩子if (bt){print_binary_tree(out, bt->right, depth + 1);if (depth == 0){out << bt->data << endl;}else if (depth == 1){out << " --" << bt->data << endl;}else{int n = depth;while (--n){cout << "    ";}out << " --" << bt->data << endl;}print_binary_tree(out, bt->left, depth + 1);}
}
template<typename T>
void binary_search_tree<T>::print_in_order_nonrecursive(void) const
{cout << "print_in_order_nonrecursive : ";stack<tree_node*> tempstack;tree_node* t = m_root;if (t != NULL){do{tempstack.push(t);t = t->left;} while (t != NULL);}while (!tempstack.empty()){tree_node* p = tempstack.top();cout << p->data << " ";tempstack.pop();if (p->right != NULL){p = p->right;do{tempstack.push(p);p = p->left;} while (p != NULL);}}cout << endl;
}
template<typename T>
inline void binary_search_tree<T>::print_in_order_recursive(std::ostream & os) const
{print_in_order_recursive(os, m_root);
}
template<typename T>
void binary_search_tree<T>::print_in_order_recursive(std::ostream & os, const tree_node * node) const
{if (node == nullptr){return;}print_in_order_recursive(os, node->left);os << node->data << " ";print_in_order_recursive(os, node->right);
}
template<typename T>
ostream& operator<<(ostream& out, const binary_search_tree<T>& tree)
{tree.print_binary_tree(out, tree.m_root, 0);return out;
}
template<typename T>
void binary_search_tree<T>::print_post_order_nonrecursive(void) const
{//后续序序遍历输出一颗树的全部结点值2,3,1//广度优先遍历cout << "print_post_order_nonrecursive : ";typedef pair<tree_node*, bool> multinode;stack<multinode> tempstack;if (m_root){tempstack.push(make_pair(m_root, false));}while (!tempstack.empty()){multinode m = tempstack.top(); tempstack.pop();if (m.first->left == NULL && m.first->right == NULL){//叶子节点直接输出cout << m.first->data << " ";}else if (m.second == true){//所有孩子都遍历完了才会到这一步cout << m.first->data << " ";}else{//非终结点,并且孩子还没遍历完。m.second = true; tempstack.push(m);if (m.first->right != NULL){tempstack.push(make_pair(m.first->right, false));}if (m.first->left != NULL){tempstack.push(make_pair(m.first->left, false));}}}cout << endl;
}
template<typename T>
void binary_search_tree<T>::print_pre_order_nonrecursive(void) const
{//先序遍历输出一颗树的全部结点值1,2,3,先根遍历cout << "print_pre_order_nonrecursive : ";stack<tree_node*> node_stack;if (m_root){node_stack.push(m_root);tree_node* t;while (!node_stack.empty()){t = node_stack.top();node_stack.pop();cout << t->data << " ";if (t->right != 0){node_stack.push(t->right);}if (t->left != 0){node_stack.push(t->left);}}cout << endl;}
}
template<typename T>
bool binary_search_tree<T>::exists(const T& data) const
{bool result = false;if (m_root){tree_node* pfind = m_root;while (pfind){if (pfind->data == data){result = true;break;}else if (data < pfind->data){pfind = pfind->left;}elsepfind = pfind->right;}}return result;
}
template<typename T>
typename binary_search_tree<T>::tree_node* binary_search_tree<T>::find(const T& data)
{//(11) your code 利用find,非递归实现:查找某个值是否存在于树中return nullptr;
}template<typename T>
int binary_search_tree<T>::size(void) const
{return m_size;
}
template<typename T>
T binary_search_tree<T>::minmum(void) const
{//(12) your code 返回最小值 ,请使用成员函数 minmum(tree_node* p) const  来实现return T();
}
template<typename T>
typename binary_search_tree<T>::tree_node* binary_search_tree<T>::minmum(tree_node* p) const
{//(13) your code 返回最小值:非递归实现return nullptr;
}
template<typename T>
T binary_search_tree<T>::maxmum(void) const
{//(14) your code 返回最大值 ,请使用成员函数 maxmum(tree_node* p) const  来实现return T();
}
template<typename T>
typename binary_search_tree<T>::tree_node* binary_search_tree<T>::maxmum(tree_node* t) const
{//(14) your code 返回最大值:非递归实现return nullptr;
}
template<typename T>
typename binary_search_tree<T>::tree_node* binary_search_tree<T>::successor(tree_node* t) const
{//(15) your code  找到一个节点的后继结点,这个函数是顺序迭代遍历二叉树的关键函数。//具体思路为,如果这个节点有右子树,那么右子树的minmum节点就是后继结点。//如果,这个节点没有右子树,比该节点大的值,一定是往右上方去的第一个节点。//参考《算法导论》return nullptr;
}
template<typename T>
void binary_search_tree<T>::print_element_order(void) const
{cout << "print_element_order by order: ";if (!empty()){//(16) your code 使用后继节点成员函数作为顺序迭代的依据,实现顺序遍历一颗二次函数。//循环获取后继,只要有后继,就输出这个后继。cout << endl;}
}template<typename T>
void binary_search_tree<T>::erase(const T& data)
{tree_node* itr = find(data);assert(itr != nullptr);--m_size;if (itr == m_root){/*删除根节点,可能需要释放根节点本身,这个时候m_root的指向需要更新。* 所以erase_node的参数是引用类型,希望可以在erase_node内部对m_root重新* 赋值来打到更新根节点指向的目的。*/erase_node(m_root);return;}else{erase_node(itr);}
}
template<typename T>
void binary_search_tree<T>::erase_node(tree_node*& pnode)
{//pnode如果没有parent,那么它就是root,这个时候,删除pnode// ,无需考虑pnode的parent需要更新的问题。//只需要处理其孩子替代自己的问题if (pnode->left == nullptr && pnode->right == nullptr){//叶子结点被删除了的话,被删除节点的父亲应该指向空指针。update_parent(pnode);//内部会先判断pnode有没有parentdelete pnode;//这里会更新传进来的引用参数,比如,如果传进来的是m_root的话。pnode = nullptr;//如果pnode是m_root的话,这句话就会变得必不可少(更新m_root)}//如果被删除的节点p只有左孩子:让p的左孩子p_left_child取代自己作为p的parent节点的做孩子else if (pnode->left != nullptr && pnode->right == nullptr){//让pnode的父亲节点和pnode的孩子建立连接erase_and_reconnect(pnode, pnode->left);}//如果只有右孩子:让右孩子取代自己else if (pnode->left == nullptr && pnode->right != nullptr){//让pnode的父亲节点和pnode的孩子建立连接erase_and_reconnect(pnode, pnode->right);}else{//https://zhuanlan.zhihu.com/p/640863892//分成下面几个步骤进行://1 找到z的后继,y是z的后继。这时候可以确定y是不可能有左孩子的。//2 删除y,让y的右孩子x取代自己的位置。删除只有一个孩子的节点上面已经讨论过。//3 让y的值覆盖z的值。tree_node* psuccessor = successor(pnode);pnode->data = psuccessor->data;//3 让y的值覆盖z的值。//2 删除y, y只有一个孩子,只有一个孩子的节点删除此函数的开始部分已经实现了。只需要调用此函数即可。//(17) your code}
}
template<typename T>
void binary_search_tree<T>::update_parent(tree_node* pnode)
{//删除叶子结点后,让父节点指向空指针if (pnode->parent){auto parent = pnode->parent;is_left_child(parent, pnode) ? (parent->left = nullptr) : (parent->right = nullptr);}
}
template<typename T>
void binary_search_tree<T>::erase_and_reconnect(tree_node*& delete_pnode, tree_node* pnode_child)
{//让左孩子取代自己,同时考虑parent不存在的情况下取代自己。if (delete_pnode->exist_parent()){//拿到父节点auto parent = delete_pnode->parent;auto is_left = is_left_child(parent, delete_pnode);//先备份地址,将来用于释放内存auto pbackup = delete_pnode;//指向新节点:自己的左孩子替代自己// reconnect1 ->delete_pnode = pnode_child;// <- reconnect2 pnode_child->parent = parent;//指向新的父亲//删除自己原来的内存delete pbackup;//父节点和自己的左孩子建立连接is_left ? parent->left = delete_pnode : parent->right = delete_pnode;}else //删除根节点, 删除根节点可不是删除整个树哦{//先备份地址,将来用于释放内存auto pbackup = delete_pnode;//指向新节点:自己的左孩子替代自己delete_pnode = pnode_child;//删除自己原来的内存delete pbackup;}
}
template<typename T>
bool binary_search_tree<T>::is_left_child(const tree_node* parent, const tree_node* pnode)
{assert(parent != nullptr);assert(pnode != nullptr);return (parent->left == pnode);
}void test_tree(const binary_search_tree<int>& _tree)
{cout << "test_tree:\n";cout << _tree;cout << "tree size : " << _tree.size() << endl;cout << "tree max length between node " << _tree.max_length_between_node() << endl;_tree.print_in_order_nonrecursive();_tree.print_element_order();_tree.print_post_order_nonrecursive();_tree.print_pre_order_nonrecursive();cout << "min element : " << _tree.minmum() << endl;cout << "max element : " << _tree.maxmum() << "\n" << endl;
}
void test1()
{binary_search_tree<int> tree;check(tree.size() == 0);check(tree.empty());check(tree.hight() == 0);
}
void test2()
{int arr[1] = { 1 };binary_search_tree<int> tree(arr, 1);check(tree.size() == 1);check(tree.to_string_in_order() == "1 ");check(!tree.empty());
}
void test3()
{int arr[2] = { 1, 2 };binary_search_tree<int> tree(arr, 2);check(tree.size() == 2);check(tree.to_string_in_order() == "1 2 ");check(!tree.empty());
}
void test4()
{int arr[2] = { 2, 1 };binary_search_tree<int> tree(arr, 2);check(tree.size() == 2);check(tree.to_string_in_order() == "1 2 ");check(!tree.empty());
}
void test5()
{constexpr int length = 3;int arr[length] = { 1, 2, 3 };binary_search_tree<int> tree(arr, length);check(tree.size() == length);check(tree.to_string_in_order() == "1 2 3 ");check(!tree.empty());
}
void test6()
{constexpr int length = 3;int arr[length] = { 2, 1, 3 };binary_search_tree<int> tree(arr, length);check(tree.size() == length);check(tree.to_string_in_order() == "1 2 3 ");check(!tree.empty());
}
void test7()
{constexpr int length = 3;int arr[length] = { 3, 2, 1, };binary_search_tree<int> tree(arr, length);check(tree.size() == length);check(tree.to_string_in_order() == "1 2 3 ");check(!tree.empty());
}
void test8()
{constexpr int length = 3;int arr[length] = { 3, 1, 2, };binary_search_tree<int> tree(arr, length);check(tree.size() == length);check(tree.to_string_in_order() == "1 2 3 ");check(!tree.empty());
}
void test9()
{constexpr int length = 10;int arr[length] = { 1,3,5,7,9,2,4,6,8,10 };binary_search_tree<int> tree(arr, length);check(tree.size() == length);check(tree.to_string_in_order() =="1 2 3 4 5 6 7 8 9 10 ");check(!tree.empty());
}
void test10()
{constexpr int length = 10;int arr[length] = { 2,4,6,8,10,1,3,5,7,9 };binary_search_tree<int> tree(arr, length);check(tree.size() == length);check(tree.to_string_in_order() =="1 2 3 4 5 6 7 8 9 10 ");check(!tree.empty());
}
void test11()
{constexpr int length = 10;int arr[length] = { 10,9,8,7,6,5,4,3,2,1 };binary_search_tree<int> tree(arr, length);check(tree.size() == length);check(tree.to_string_in_order() =="1 2 3 4 5 6 7 8 9 10 ");check(!tree.empty());check(tree.hight() == 10);
}
void test12()
{constexpr int length = 10;int arr[length] = { 5,4,3,2,1,10,9,8,7,6 };binary_search_tree<int> tree(arr, length);check(tree.size() == length);check(tree.to_string_in_order() =="1 2 3 4 5 6 7 8 9 10 ");check(!tree.empty());check(tree.hight() == 6);
}
void test13()
{constexpr int length = 1;int arr[length] = { 1 };binary_search_tree<int> tree(arr, length);check(tree.minmum() == 1);check(tree.maxmum() == 1);check(tree.hight() == 1);
}
void test14()
{constexpr int length = 2;int arr[length] = { 1, 2 };binary_search_tree<int> tree(arr, length);check(tree.minmum() == 1);check(tree.maxmum() == 2);check(tree.hight() == 2);
}
void test15()
{constexpr int length = 10;int arr[length] = { 5,4,3,2,1,10,9,8,7,6 };binary_search_tree<int> tree(arr, length);check(tree.minmum() == 1);check(tree.maxmum() == 10);
}
void test16()
{constexpr int length = 1;int arr[length] = { 1 };binary_search_tree<int> tree(arr, length);check(tree.exists(1));tree.erase(1);check(!tree.exists(1));check(tree.size() == 0);
}
void test17()
{int arr[] = { 3,2,1 };binary_search_tree<int> tree(arr, sizeof(arr) / sizeof(int));check(tree.exists(1));cout << tree << endl;tree.erase(2);cout << tree << endl;check(!tree.exists(2));check(tree.size() == 2);check(!tree.empty());check(tree.to_string_in_order() == "1 3 ");
}
void test18()
{constexpr int length = 2;int arr[length] = { 1, 2 };binary_search_tree<int> tree(arr, length);check(tree.exists(1));check(tree.exists(2));tree.erase(1);check(!tree.exists(1));check(tree.exists(2));tree.clear();check(tree.empty());check(tree.size() == 0);check(!tree.exists(2));
}
void test19()
{constexpr int length = 10;int arr[length] = { 5,3,4,1,2,10,8,9,7,6 };binary_search_tree<int> tree(arr, length);cout << tree << endl << "-------------------" << endl;tree.erase(1);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "2 3 4 5 6 7 8 9 10 ");tree.erase(2);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "3 4 5 6 7 8 9 10 ");tree.erase(3);check(tree.to_string_in_order() == "4 5 6 7 8 9 10 ");cout << tree << endl << "-------------------" << endl;tree.erase(4);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "5 6 7 8 9 10 ");tree.erase(5);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "6 7 8 9 10 ");tree.erase(6);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "7 8 9 10 ");tree.erase(7);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "8 9 10 ");tree.erase(8);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "9 10 ");tree.erase(9);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "10 ");tree.erase(10);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "");
}
void test20()
{constexpr int length = 10;int arr[length] = { 5,3,4,1,2,10,8,9,7,6 };binary_search_tree<int> tree(arr, length);cout << tree << endl << "-------------------" << endl;tree.erase(10);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "1 2 3 4 5 6 7 8 9 ");tree.erase(8);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "1 2 3 4 5 6 7 9 ");
}
void test21()
{constexpr int length = 10;int arr[length] = { 5,3,4,1,2,10,8,9,7,6 };binary_search_tree<int> tree(arr, length);cout << tree << endl << "-------------------" << endl;tree.erase(5);cout << tree << endl << "-------------------" << endl;check(tree.to_string_in_order() == "1 2 3 4 6 7 8 9 10 ");
}
void test22()
{constexpr int length = 10;int arr[length] = { 2,4,6,8,10,1,3,5,7,9 };binary_search_tree<int> tree(arr, length);check(tree.hight() == 6);tree.erase(1);check(!tree.exists(1));tree.erase(2);check(!tree.exists(2));tree.erase(3);check(!tree.exists(3));tree.erase(4);check(!tree.exists(4));tree.erase(5);check(!tree.exists(5));check(tree.to_string_in_order() == "6 7 8 9 10 ");tree.erase(6);check(!tree.exists(6));tree.erase(7);check(!tree.exists(7));tree.erase(8);check(!tree.exists(8));tree.erase(9);check(!tree.exists(9));tree.erase(10);check(!tree.exists(10));check(tree.empty());
}
void test23()
{//test equalint a[3] = { 15, 12, 14 };binary_search_tree<int> tree(a, 3);check(tree.hight() == 3);cout << "tree:\n" << tree << endl;auto tree2 = tree;cout << "tree2:\n" << tree2 << endl;check(tree2.equal(tree));
}
void test24(binary_search_tree<int>& tree)
{cout << "tree:\n" << tree << endl;auto tree2 = tree;cout << "tree2:\n" << tree2 << endl;check(tree2.equal(tree));check(tree2 == tree);tree.clear();cout << tree << endl;check(tree2.equal(tree) == false);check(tree2 != tree);
}
void test25()
{int a[3] = { 15, 12, 14 };binary_search_tree<int> tree(a, 3);tree.print_in_order_recursive(cout);
}
int main()
{test1();//emptytest2();//test create insert empty sizetest3();test4();test5();test6();test7();test8();test9();test10();test11();test12();test13();test14();//minmum maxmumtest15();test16();//exists clear erase size emptytest17();//erasetest18();//erasetest19();//erasetest20();//erasetest21();//erasetest22();//erasetest23();int maxLength = 0;int a[100] = { 15, 12, 14, 13, 16, 34, 23, 24, 22, 21, 20, 19, 18, 17, 35, 36, 37, 38, 39, 40, 41, 0 };binary_search_tree<int> tree(a, 22);check(tree.size() == 22);check(tree.empty() == false);check(tree.maxmum() == 41);check(tree.minmum() == 0);test_tree(tree);binary_search_tree<int> tree1(a, 3);test_tree(tree1);test24(tree);//test copytest25();//printreturn 0;
}

正确输出

line:725 Pass
line:726 Pass
line:727 Pass
line:733 Pass
line:734 Pass
line:735 Pass
line:741 Pass
line:742 Pass
line:743 Pass
line:749 Pass
line:750 Pass
line:751 Pass
line:758 Pass
line:759 Pass
line:760 Pass
line:767 Pass
line:768 Pass
line:769 Pass
line:776 Pass
line:777 Pass
line:778 Pass
line:785 Pass
line:786 Pass
line:787 Pass
line:794 Pass
line:796 Pass
line:797 Pass
line:804 Pass
line:806 Pass
line:807 Pass
line:814 Pass
line:816 Pass
line:817 Pass
line:818 Pass
line:825 Pass
line:827 Pass
line:828 Pass
line:829 Pass
line:836 Pass
line:837 Pass
line:838 Pass
line:845 Pass
line:846 Pass
line:847 Pass
line:854 Pass
line:855 Pass
line:862 Pass
line:864 Pass
line:865 Pass
line:871 Pass
3--2--13--1line:875 Pass
line:876 Pass
line:877 Pass
line:878 Pass
line:885 Pass
line:886 Pass
line:888 Pass
line:889 Pass
line:891 Pass
line:892 Pass
line:893 Pass--10--9--8--7--6
5--4--3--2--1---------------------10--9--8--7--6
5--4--3--2-------------------
line:903 Pass--10--9--8--7--6
5--4--3-------------------
line:906 Pass
line:908 Pass--10--9--8--7--6
5--4---------------------10--9--8--7--6
5-------------------
line:912 Pass
10--9--8--7--6-------------------
line:915 Pass
10--9--8--7-------------------
line:918 Pass
10--9--8-------------------
line:921 Pass
10--9-------------------
line:924 Pass
10-------------------
line:927 Pass-------------------
line:930 Pass--10--9--8--7--6
5--4--3--2--1---------------------9--8--7--6
5--4--3--2--1-------------------
line:940 Pass--9--7--6
5--4--3--2--1-------------------
line:943 Pass--10--9--8--7--6
5--4--3--2--1---------------------10--9--8--7
6--4--3--2--1-------------------
line:953 Pass
line:960 Pass
line:962 Pass
line:964 Pass
line:966 Pass
line:968 Pass
line:970 Pass
line:971 Pass
line:973 Pass
line:975 Pass
line:977 Pass
line:979 Pass
line:981 Pass
line:982 Pass
line:989 Pass
tree:
15--14--12tree2:
15--14--12line:993 Pass
line:1047 Pass
line:1048 Pass
line:1049 Pass
line:1050 Pass
test_tree:--41--40--39--38--37--36--35--34--24--23--22--21--20--19--18--17--16
15--14--13--12--0
tree size : 22
tree max length between node 14
print_in_order_nonrecursive : 0 12 13 14 15 16 17 18 19 20 21 22 23 24 34 35 36 37 38 39 40 41
print_element_order by order: 0 12 13 14 15 16 17 18 19 20 21 22 23 24 34 35 36 37 38 39 40 41
print_post_order_nonrecursive : 0 13 14 12 17 18 19 20 21 22 24 23 41 40 39 38 37 36 35 34 16 15
print_pre_order_nonrecursive : 15 12 0 14 13 16 34 23 22 21 20 19 18 17 24 35 36 37 38 39 40 41
min element : 0
max element : 41test_tree:
15--14--12
tree size : 3
tree max length between node 2
print_in_order_nonrecursive : 12 14 15
print_element_order by order: 12 14 15
print_post_order_nonrecursive : 14 12 15
print_pre_order_nonrecursive : 15 12 14
min element : 12
max element : 15tree:--41--40--39--38--37--36--35--34--24--23--22--21--20--19--18--17--16
15--14--13--12--0tree2:--41--40--39--38--37--36--35--34--24--23--22--21--20--19--18--17--16
15--14--13--12--0line:1000 Pass
line:1001 Passline:1004 Pass
line:1005 Pass
12 14 15 Memory leak report:
No memory leak.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/63028.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Android的旅游管理系统 微信小程序

随着网络科技的发展&#xff0c;移动智能终端逐渐走进人们的视线&#xff0c;相关应用越来越广泛&#xff0c;并在人们的日常生活中扮演着越来越重要的角色。因此&#xff0c;关键应用程序的开发成为影响移动智能终端普及的重要因素&#xff0c;设计并开发实用、方便的应用程序…

2023年高教社杯数学建模思路 - 案例:感知机原理剖析及实现

文章目录 1 感知机的直观理解2 感知机的数学角度3 代码实现 4 建模资料 # 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 感知机的直观理解 感知机应该属于机器学习算法中最简单的一种算法&#xff0c;其…

实现无公网IP环境下远程访问本地Jupyter Notebook服务的方法及端口映射

文章目录 前言1. Python环境安装2. Jupyter 安装3. 启动Jupyter Notebook4. 远程访问4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5. 固定公网地址 前言 Jupyter Notebook&#xff0c;它是一个交互式的数据科学和计算环境&#xff0c;支持多种编程语言&#xff0c;如…

JDBC连接数据库

目录 一.什么是JDBC 二.JDBC的实现步骤 三.简单使用JDBC 一.什么是JDBC JDBC是Java数据库连接&#xff0c;是java中提供数据库访问的Java API,它为关系型数据库的提供了统一访问规范。 二.JDBC的实现步骤 1.创建数据库连接 这里有两种方式: DataSource创建&#xff0c;提…

VSCode之C++ CUDA极简环境配置

背景 想要了解CUDA并行计算原理&#xff0c;同时针对深度学习中出现一些“不支持算子”可能需要手写的需要&#xff0c;配置一个简单的CUDA编译环境&#xff0c;探索CUDA编程的范式【注&#xff1a;CUDA环境配置略】。结果展示 示例代码 #include "cuda_runtime.h" …

Ramp 有点意思的题目

粗一看都不知道这个要干什么&#xff0c;这 B 装得不错。 IyEvdXNyL2Jpbi9lbnYgcHl0aG9uMwoKJycnCktlZXAgdXMgb3V0IG9mIGdvb2dsZSBzZWFyY2ggcmVzdWx0cy4uCgokIG9kIC1kIC9kZXYvdXJhbmRvbSB8IGhlYWQKMDAwMDAwMCAgICAgNjAyMTUgICAyODc3OCAgIDI5MjI3ICAgMjg1NDggICA2MjY4NiAgIDQ1MT…

无涯教程-Android - 应用组件

应用程序组件是Android应用程序的基本组成部分&#xff0c;这些组件需要在应用程序清单文件 AndroidManifest.xml 注册&#xff0c;该文件描述了应用程序的每个组件以及它们如何交互。 Android应用程序可以使用以下四个主要组件- Sr.NoComponents & 描述1 Activities 它们…

【8 排序】简单选择排序。

顺序表&#xff1a; void Swap(int &a,int &b){int temp;tempa;ab;btemp; } void SelectSort(int A[],int n){int min,i,j;for(i0;i<n-1;i){mini;for(ji1;j<n;j)if(A[j]<A[min])minj;if(min!i)Swap(A[i],A[min]);} } 单链表&#xff1a; void SelectSort…

中科驭数以DPU先进计算技术,夯实下一代金融IT基础设施底座

由中国计算机学会主办的第19届CCF全国高性能计算学术年会&#xff08;CCF HPC China 2023&#xff09;于8月23日至26日在青岛成功召开。在“高性能金融计算”主题论坛上&#xff0c;中科驭数高级副总裁、CTO卢文岩应邀发表了题为《DPU先进计算技术助力下一代交易底座》的演讲&a…

Java设计模式:四、行为型模式-06:观察者模式

文章目录 一、定义&#xff1a;观察者模式二、模拟场景&#xff1a;观察者模式2.1 观察者模式2.2 引入依赖2.3 工程结构2.4 模拟摇号2.4.1 摇号服务接口2.4.2 摇号返回结果类 三、违背方案&#xff1a;观察者模式3.0 引入依赖3.1 工程结构3.2 添加摇号接口和实现3.2.1 摇号服务…

MySQL 数据库常用命令大全(完整版)

文章目录 1. MySQL命令2. MySQL基础命令3. MySQL命令简介4. MySQL常用命令4.1 MySQL准备篇4.1.1 启动和停止MySQL服务4.1.2 修改MySQL账户密码4.1.3 MySQL的登陆和退出4.1.4 查看MySQL版本 4.2 DDL篇&#xff08;数据定义&#xff09;4.2.1 查询数据库4.2.2 创建数据库4.2.3 使…

JVM内存模型介绍

java内存中变量的存储位置 局部变量&#xff1a;方法中的局部变量存在于栈内存。每当程序调用一个方法时&#xff0c;系统都会为该方法建立一个方法栈&#xff0c;所在方法中声明的变量就放在方法栈中&#xff0c;方法结束系统会销毁该方法栈&#xff0c;在该方法中声明的变量随…

2023开学礼《乡村振兴战略下传统村落文化旅游设计》山东农大许少辉八一新书

2023开学礼《乡村振兴战略下传统村落文化旅游设计》山东农大许少辉八一新书

Java“魂牵”京东商品详情描述数据,京东商品详情API接口,京东API接口申请指南

要通过京东的API获取商品详情描述数据&#xff0c;您可以使用京东开放平台提供的接口来实现。以下是一种使用Java编程语言实现的示例&#xff0c;展示如何通过京东开放平台API获取商品详情&#xff1a; 首先&#xff0c;确保您已注册成为京东开放平台的开发者&#xff0c;并创…

时序预测 | MATLAB实现CNN-BiGRU卷积双向门控循环单元时间序列预测

时序预测 | MATLAB实现CNN-BiGRU卷积双向门控循环单元时间序列预测 目录 时序预测 | MATLAB实现CNN-BiGRU卷积双向门控循环单元时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现CNN-BiGRU卷积双向门控循环单元时间序列预测&#xff1b; 2.运行环境…

cmd: Union[List[str], str], ^ SyntaxError: invalid syntax

跑项目在调用from easyprocess import EasyProcess 遇到报错&#xff1a; cmd: Union[List[str], str], ^ SyntaxError: invalid syntax猜测是EasyProcess版本与python版本不对应 pip show EasyProcess查证一下&#xff1a; WARNING: pip is being invoked by an old…

OPENCV实现暴力特征匹配

# -*- coding:utf-8 -*- """ 作者:794919561 日期:2023/9/1 """ import cv2 import numpy as np# 读

TensorFlow 的基本概念和使用场景介绍

文章目录 一、TensorFlow基本概念1. 张量&#xff08;Tensor&#xff09;2. 计算图&#xff08;Computation Graph&#xff09;3. 会话&#xff08;Session&#xff09; 二、TensorFlow使用场景1. 机器学习&#xff08;Machine Learning&#xff09;2. 计算机视觉&#xff08;C…

D358周赛复盘:哈希表模拟⭐⭐+链表乘法翻倍运算(先反转)⭐⭐⭐

文章目录 2815.数组中的最大数对和思路完整版 2816.翻倍以链表形式表示的数字&#xff08;先反转&#xff0c;再处理进位&#xff09;思路完整版 补充&#xff1a;206.反转链表&#xff08;双指针法&#xff09;完整版 2817.限制条件下元素之间的最小绝对差&#xff08;cpp不知…

20230901工作心得:IDEA列操作lambda表达式加强版用法

今天是中小学开学时间&#xff0c;亦是9月的开始&#xff0c;继续努力。 今日收获较大的有四个地方&#xff0c;先说这四点。 1、IDEA列操作 使用场景&#xff1a;需要批量将Excel表格里的数据插入到数据库中&#xff0c;此时需要写大量的insert SQL语句。 比如像这样的&am…