1、划分数据集比例split_train_val.py
import os
import random
import argparseparser = argparse.ArgumentParser( )
parser.add_argument( '--xml_path' , default = '/home/jovyan/exp_2607/dataset-445/yolo_labels' , type = str, help = 'input xml label path' )
parser.add_argument( '--txt_path' , default = '/home/jovyan/exp_2607/data/mydata/ImageSets/Main' , type = str, help = 'output txt label path' )
opt = parser.parse_args( ) trainval_percent = 1.0
train_percent = 0.7
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir( xmlfilepath)
if not os.path.exists( txtsavepath) :os.makedirs( txtsavepath) num = len( total_xml)
list_index = range( num)
tv = int( num * trainval_percent)
tr = int( tv * train_percent)
trainval = random.sample( list_index, tv)
train = random.sample( trainval, tr ) file_trainval = open( txtsavepath + '/trainval.txt' , 'w' )
file_test = open( txtsavepath + '/test.txt' , 'w' )
file_train = open( txtsavepath + '/train.txt' , 'w' )
file_val = open( txtsavepath + '/val.txt' , 'w' ) for i in list_index:name = total_xml[ i] [ :-4] + '\n' if i in trainval:file_trainval.write( name) if i in train:file_train.write( name) else:file_val.write( name) else:file_test.write( name) file_trainval.close( )
file_train.close( )
file_val.close( )
file_test.close( )
2.xml_to_yolo
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = [ 'train' , 'val' , 'test' ]
classes = [ "door_close" , "door_open" , "billboard" , "tear up" ,"person" , "forklift" , "shovel loader" , "nothing forklift" ,"conveyer belt" ]
abs_path = os.getcwd( )
print( abs_path) def convert( size, box) :dw = 1 . / ( size[ 0 ] ) dh = 1 . / ( size[ 1 ] ) x = ( box[ 0 ] + box[ 1 ] ) / 2.0 - 1 y = ( box[ 2 ] + box[ 3 ] ) / 2.0 - 1 w = box[ 1 ] - box[ 0 ] h = box[ 3 ] - box[ 2 ] x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation( image_id) :in_file = open( '/home/jovyan/exp_2529/data/mydata/xml/%s.xml' % ( image_id) , encoding = 'UTF-8' ) out_file = open( '/home/jovyan/exp_2529/data/mydata/labels/%s.txt' % ( image_id) , 'w' ) tree = ET.parse( in_file) root = tree.getroot( ) size = root.find( 'size' ) w = int( size.find( 'width' ) .text) h = int( size.find( 'height' ) .text) for obj in root.iter( 'object' ) :difficult = obj.find( 'difficult' ) .textcls = obj.find( 'name' ) .textif cls not in classes or int( difficult) == 1 :continue cls_id = classes.index( cls) xmlbox = obj.find( 'bndbox' ) b = ( float( xmlbox.find( 'xmin' ) .text) , float( xmlbox.find( 'xmax' ) .text) , float( xmlbox.find( 'ymin' ) .text) ,float( xmlbox.find( 'ymax' ) .text)) b1, b2, b3, b4 = bif b2 > w:b2 = wif b4 > h:b4 = hb = ( b1, b2, b3, b4) bb = convert(( w, h) , b) out_file.write( str( cls_id) + " " + " ".join( [str( a) for a in bb]) + '\n') wd = getcwd( )
for image_set in sets: image_ids = open( '/ home/ jovyan/ exp_2607/ data/ mydata/ ImageSets/ Main/ % s.txt' % ( image_set)) .read( ) .strip( ) .split( ) if not os.path.exists( '/home/jovyan/exp_2607/dataset_copy/' ) :os.makedirs( '/home/jovyan/exp_2607/dataset_copy/' ) if not os.path.exists( '/home/jovyan/exp_2607/dataset_copy/images' ) :os.symlink( '/home/jovyan/exp_2607/dataset-445/images' , '/home/jovyan/exp_2607/dataset_copy/images' ) if not os.path.exists( '/home/jovyan/exp_2607/dataset_copy/labels' ) :os.symlink( '/home/jovyan/exp_2607/dataset-445/yolo_labels' , '/home/jovyan/exp_2607/dataset_copy/labels' ) if not os.path.exists( '/home/jovyan/exp_2607/data/mydata/dataSet_path/' ) :os.makedirs( '/home/jovyan/exp_2607/data/mydata/dataSet_path/' ) list_file = open( '/home/jovyan/exp_2607/data/mydata/dataSet_path/%s.txt' % ( image_set) , 'w' ) for image_id in image_ids:list_file.write( '/home/jovyan/exp_2607/dataset_copy/images/%s.png\n' % ( image_id)) list_file.close( )
3.mydata.yaml
train: /home/jovyan/exp_2607/data/mydata/dataSet_path/train.txt
val: /home/jovyan/exp_2607/data/mydata/dataSet_path/val.txt
test: /home/jovyan/exp_2607/data/mydata/dataSet_path/test.txt
nc: 9
names: [ 'door_close' , 'door_open' , 'billboard' , 'tear up' , 'person' , 'forklift' , 'shovel loader' , 'nothing forklift' , 'conveyer belt' ]