数据结构——二叉树(先序、中序、后序及层次四种遍历(C语言版))超详细~ (✧∇✧) Q_Q

   

目录

   

二叉树的定义:

*特殊的二叉树:

 二叉树的性质:

 二叉树的声明: 

 二叉树的先序遍历:

 二叉树的中序遍历:

 二叉树的后序遍历:

二叉树的层序遍历: 

二叉树的节点个数:

二叉树叶节点个数: 

 最后完整代码:

运行结果: 


二叉树的定义:

  • 二叉树是n(n≥0)个结点的有限集合:
    ① 或者为空二叉树,即n = 0。
    ② 或者由一个根结点和两个互不相交的被称为根的左子树右子树组成。左子树和右子树又分别是一棵二叉树。
  • 特点:①每个结点至多只有两棵子树 ②左右子树不能颠倒(二叉树是有序树【注意区别:度为2的有序树】

一颗普通的二叉树(栗子): 

*特殊的二叉树:

1.满二叉树:一个二叉树,如果每一个层的节点数都达到最大值,则这个二叉树就是满二叉树。也就是说,一个二叉树的层数为k,且节点总数是(2^k-1),则它就是满二叉树。

2.完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为k的,有n个节点的二叉树,当且仅当其每一个节点与k都与其深度为k的满二叉树中编号从1至n的节点一一对应时称之为完全二叉树。注意满二叉树是一种特殊的完全二叉树。

 二叉树的性质:

1.若规定根节点的层数为1,则一颗非空二叉树的第i层上最多有2^(i-1)个节点

2.若规定根节点的层数为1,则其深度为h的二叉树的最大节点数是2^h-1

3.对任何一颗二叉树,如果度为0期叶节点个数为n0,度为2的分支节点个数为n2,则有n0=n2+1;

即度为0的叶节点比度为2的分支节点多1

4.若规定根节点的层数为1,具有n个节点的满二叉树的深度h=log2(N+1).

 二叉树的声明: 

为了方便后续的操作与理解,这里给出二叉树的声明 

 二叉树的先序遍历:

 (1).先序遍历可以想象为,一个小人从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果

代码解释:

void PrevOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%c ", root->data);PrevOrder(root->left);PrevOrder(root->right);
}

根,PrevOrder(root->left) 后PrevOrder(root->right).    即  根->左子树->右子树 的形式进行遍历。函数进行递推,直到把程序化为不可再分的小的字程序。后回溯依次打印对应数据信息(root->data). 

 二叉树的中序遍历:

2).中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最左边开始垂直掉到地上),然后从左往右数,得出的结果便是中序遍历的结果

代码解释:

void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);
}

函数递归展开图与二叉树先序遍历类似.,这里就不在重复说明.

InOrder(root->left) 根 Inorder(root->right);即  左子树  根   右子树  的形式

 二叉树的后序遍历:

(3).后序遍历就像是剪葡萄,我们要把一串葡萄剪成一颗一颗的。如果发现一剪刀就能剪下的葡萄(必须是一颗葡萄)(也就是葡萄要一个一个掉下来,不能一口气掉超过1个这样),就把它剪下来,组成的就是后序遍历了。

代码解释: 

void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%c ", root->data);
}

PostOrder(root->left)  PostOrder(root->right)  根;即  左子树   右子树   根  的形式 

二叉树的层序遍历: 

顾名思义,就是一层一层的进行遍历。

图解:

这里用到的队列先进先出的思想,核心思路就是上一层带下一层。如A先进队列,接着A出队列,带着B和C依次进队列,B出带DE,C出带FG……以此类推。 

 代码解释:

void LevelOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%c ", front->data);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}printf("\n");QueueDestory(&q);
}

初始化队列后,依次按上述的方式入数据和删除数据,最后就能得到相应的序列 

二叉树的节点个数:

int TreeSize3(BTNode* root)
{return root == NULL ? 0 : TreeSize3(root->left) + TreeSize3(root->right) + 1;
}

分为最小的子程序即根的左右子树节点个数加本身。

也就是 TreeSize3(root->left)+TreeSize3(root->right)+1;

二叉树叶节点个数: 

int TreeLeafSize(BTNode* root)
{if (root == NULL)return 0;if (root->left == NULL && root->right == NULL)return 1;return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

 最后完整代码:

#include<stdio.h>
#include<stdlib.h>#include"Queue.h"typedef int BTDataType;
typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;struct BinaryTreeNode* right;BTDataType data;
}BTNode;void PrevOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%c ", root->data);PrevOrder(root->left);PrevOrder(root->right);
}void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);
}void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%c ", root->data);
}
int size = 0;
void TreeSize1(BTNode* root)
{if (root == NULL){return;}else size++;TreeSize1(root->left);TreeSize1(root->right);
}void TreeSize2(BTNode* root,int* psize)
{if (root == NULL)return;else{++(*psize);}TreeSize2(root->left,psize);TreeSize2(root->right, psize);
}int TreeSize3(BTNode* root)
{return root == NULL ? 0 : TreeSize3(root->left) + TreeSize3(root->right) + 1;
}int TreeLeafSize(BTNode* root)
{if (root == NULL)return 0;if (root->left == NULL && root->right == NULL)return 1;return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}void LevelOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%c ", front->data);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}printf("\n");QueueDestory(&q);
}int main()
{BTNode* A = (BTNode*)malloc(sizeof(BTNode));A->data = 'A';A->left = NULL;A->right = NULL;BTNode* C = (BTNode*)malloc(sizeof(BTNode));C->data = 'C';C->left = NULL;C->right = NULL;BTNode* B = (BTNode*)malloc(sizeof(BTNode));B->data = 'B';B->left = NULL;B->right = NULL;BTNode* D = (BTNode*)malloc(sizeof(BTNode));D->data = 'D';D->left = NULL;D->right = NULL;BTNode* E = (BTNode*)malloc(sizeof(BTNode));E->data = 'E';E->left = NULL;E->right = NULL;A->left = B;A->right = C;B->left = D;B->right = E;PrevOrder(A);printf("\n");PostOrder(A);printf("\n");LevelOrder(A);printf("TreeLeafSize:%d\n", TreeLeafSize(A));printf("TreeSize:%d\n", TreeSize3(A));printf("TreeSize:%d\n", TreeSize3(B));return 0;
}

注意这里TreeSize1,TreeSize2,TreeSize3只是计算二叉树节点个数的三种方法。

这里创建的二叉树为:

 

运行结果: 

博客到这里也是结束了,喜欢的小伙伴可以点赞加关注支持下博主,这对我真的很重要~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/627314.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用netdxf(C#)框架实现dxf文件读取与导出坐标

使用netdxf&#xff08;C#&#xff09;框架实现dxf文件读取与导出坐标 一、新建窗体应用程序DxfToolDemo&#xff0c;将默认的Form1重命名为FormDxfTool 窗体FormDxfTool.Designer.cs设计器源程序如下&#xff1a; namespace DxfToolDemo {partial class FormDxfTool{/// <…

x-cmd pkg | magic-wormhole - (魔法虫洞)文件传输工具

目录 简介首次用户功能特点竞品和相关作品进一步探索 简介 magic-wormhole 是一个用于在两台计算机之间安全传输文件的工具。它通过创建一个临时的点对点连接&#xff0c;允许用户将文件或文本从一台计算机发送到另一台计算机。 它使用 PAKE 这一系列的加密算法&#xff0c;通…

扫地机行业研究:预计2028年将达到78.51亿美元

吸尘器、扫地机器人、洗地机为清洁电器中最亮眼的三大品类。吸尘器主要用来吸尘&#xff0c;扫地机的主要作用也是用于除尘&#xff0c;具备扫拖一体功能的扫地机&#xff0c;干湿混合垃圾暂时做不到干净清理。洗地机集齐了“吸、拖、洗”三种功能为一体&#xff0c;并且具备自…

消息队列-RockMQ-定时延时发送消息

定时延时发送消息 任务需要延迟一段时间再进行处理。 生产者 public class Producer {public static void main(String[] args) throws Exception {DefaultMQProducer producer new DefaultMQProducer("producer_group");producer.setNamesrvAddr("ip:9876&q…

【Python 数据分析】数据预处理:z-score 标准化、min-max 归一化、数据缺失值处理、数据重复处理

目录 简述 / 前言1. z-score 标准化2. min-max 归一化3. 数据缺失值处理4. 数据重复处理 简述 / 前言 本篇文章分享数据分析中最重要的一个步骤&#xff1a;数据预处理。我们在做数据分析之前&#xff0c;都需要采集很多数据&#xff0c;这些数据可能是从官网下载的&#xff0…

【docker-compose】【nginx】内网环境https配置

目录 1、openssl生成自签名证书和私钥2、nginx.conf配置ssl3、docker-compose挂载 1、openssl生成自签名证书和私钥 在部署服务器上&#xff0c;新建cert目录&#xff0c;执行以下指令&#xff0c;然后生成.crt和.key文件 openssl req -newkey rsa:2048 -nodes -keyout rsa_pri…

linux yum仓库

yum是基于rpm包构建的软件更新机制&#xff0c;能够自动解决软件包之间的依赖关系。 常用命令 查询 yum list [软件名] 显示可用的安装包&#xff0c;如果不加软件名则显示所有的可用包 yum info [软件名] 显示安装包的详细信息 如果不加软件名是显示所有包…

2024年【上海市安全员B证】考试试卷及上海市安全员B证复审模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 上海市安全员B证考试试卷根据新上海市安全员B证考试大纲要求&#xff0c;安全生产模拟考试一点通将上海市安全员B证模拟考试试题进行汇编&#xff0c;组成一套上海市安全员B证全真模拟考试试题&#xff0c;学员可通过…

海外短剧APP小程序开发 随心随意畅享大片

随着智能手机的普及和网络的高速发展&#xff0c;短剧APP已经成为当今热门的观影方式。作为一种全新的观影体验&#xff0c;海外短剧APP以其丰富多样的内容吸引了大量用户。本文将为您介绍海外短剧APP开发的相关知识和其所带来的优势&#xff0c;以及市场前景和发展趋势。 海外…

jsonschema,一个超强的 Python 库!

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 大家好&#xff0c;今天为大家分享一个超强的 Python 库 - jsonschema。 Github地址&#xff1a;https://github.com/python-jsonschema/jsonschema JSON&#xff08;JavaScript Object Notation&#xff09;是…

MySQL 多版本并发控制 MVCC

MVCC出现背景 事务的4个隔离级别以及对应的三种异常 读未提交&#xff08;Read uncommitted&#xff09; 读已提交&#xff08;Read committed&#xff09;&#xff1a;脏读 可重复读&#xff08;Repeatable read&#xff09;&#xff1a;不可重复读 串行化&#xff08;Se…

.NET领域最硬核的gRPC 核心能力一把梭

前言&#xff0c;本文定位为.NET方向 grpc核心能力一把梭&#xff0c;全篇是姿势性和结论性的展示&#xff0c; 方便中高级程序员快速上手.NET Grpc。 有关grpc更深层次的前世今生、底层原理、困惑点释疑请听下回分解&#xff0c; 欢迎菜鸟老鸟们提出宝贵意见。 grpc宏观目标&…

跨平台进程/任务管理服务——Meproc的配置

配置 Meproc的配置非常简单&#xff0c;只有以下几个配置选项。 Conf [ip: 0.0.0.0,port: 8606,log_level: debug,log_dir: /tmp,web: [ip: 127.0.0.1,port: 8606,],bootstrap_cmd: , ];ip 是 Meproc 服务监听 HTTP 请求的地址。port 是Meproc服务监听HTTP请求的端口。log_l…

「Vue3面试系列」Vue 3.0中如果想实现一个 Modal组件应该怎么设计?

文章目录 一、组件设计二、需求分析三、实现流程目录结构组件内容实现 API 形式事件处理其他完善 一、组件设计 组件就是把图形、非图形的各种逻辑均抽象为一个统一的概念&#xff08;组件&#xff09;来实现开发的模式 现在有一个场景&#xff0c;点击新增与编辑都弹框出来进…

51单片机学习总结(自学)

1、模块化编程 c语言模块化编程实现思路设计代码 具体的程序实现代码如下所示 1&#xff1a;程序的头文件 2&#xff1a;程序的函数文件 3&#xff1a;程序的主文件控制函数的实现 持续更新中......

用el-image-viewer实现全局预览图片

背景 在后台管理系统中&#xff0c;一些预览图片的场景&#xff0c;通常都是使用 el-image-viewer 去实现&#xff0c;但是如果多个地方都需要预览图片&#xff0c;又要重复的去写 el-image-viewer 以及一些重复的和预览相关的代码。 可以把预览图片的组件放在根文件&#x…

MyTinySTL 简单分析(一)--iterator.h

MyTinySTL 简单分析 目前在学习STL&#xff0c;看到一个开源的项目MyTinySTL&#xff0c;非常不错。想着照着这个代码自己敲一遍应该也能有些进步。然后就开始了学习过程。 首先分析的是vector 以下是由vector.h关联的所有头文件 其中有几个文件是重复的&#xff0c;例如type…

智能光栅光片显微成像技术的LabVIEW解决方案

智能光栅光片显微成像技术的LabVIEW解决方案 在生物医学研究中&#xff0c;高效的成像技术对于捕捉细胞内罕见和复杂事件至关重要。智能光栅光片显微技术&#xff08;smartLLSM&#xff09;的出现&#xff0c;代表了LabVIEW软件在高端成像领域的革命性应用&#xff0c;这项技术…

solr 远程命令执行漏洞复现 (CVE-2019-17558)

solr 远程命令执行漏洞复现 (CVE-2019-17558) ‍ 名称: solr 远程命令执行 (CVE-2019-17558) 描述: Apache Velocity是一个基于Java的模板引擎&#xff0c;它提供了一个模板语言去引用由Java代码定义的对象。Velocity是Apache基金会旗下的一个开源软件项目&#xff0c;旨在确…

Qt 快捷键设置

以 “在编辑时自动补齐”快捷键 为例&#xff1a; 位置&#xff1a;红色 搜索快捷键&#xff1a;蓝色 修改方式&#xff1a;绿色 快捷键&#xff1a;黄色