【2D/3D RRT* 算法】使用快速探索随机树进行最佳路径规划(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 2D

2.2 3D

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

2D/3D RRT*算法是一种基于快速探索随机树的最佳路径规划算法。它是RRT*算法的扩展版本,能够在二维或三维环境中寻找最优路径。

该算法的核心思想是通过随机采样的方式构建一颗探索树,其中树的节点表示机器人的位置,边表示机器人从一个位置移动到另一个位置的路径。探索树的生长过程中,会不断进行路径优化,以找到最佳路径。

具体实现过程中,算法首先生成一个起始节点,并随机采样其他节点。然后,对于每个采样的节点,算法会在树中查找最近邻节点,并以此节点为起点,通过插值和优化等方式生成一条新的路径。新路径的代价(如路径长度或代价函数)将与之前的路径进行比较,选择代价更小的路径,将新节点插入树中。

该算法的最终目标是在有限的探索时间内找到从起始位置到目标位置的最优路径。通过不断优化路径,RRT*算法能够找到接近最短路径的解,同时具有较低的计算复杂度。

在二维或三维的路径规划问题中,2D/3D RRT*算法具有广泛的应用。例如,它可以用于地图导航、机器人路径规划、无人机航迹规划等场景。通过灵活调整采样策略、路径优化策略等参数,该算法能够适应各种复杂的环境和约束条件。

总之,2D/3D RRT*算法利用快速探索随机树的方式,在二维或三维环境中进行最佳路径规划,具有较高的搜索效率和路径质量,为机器人和自主系统的路径规划问题提供了有效的解决方案。

📚2 运行结果

2.1 2D

2.2 3D

 

 

部分代码:

for i = 1:1:numNodes
    q_rand = [floor(rand(1)*x_max) floor(rand(1)*y_max)];
    plot(q_rand(1), q_rand(2), 'x', 'Color',  [0 0.4470 0.7410])
    
    % Break if goal node is already reached
    for j = 1:1:length(nodes)
        if nodes(j).coord == q_goal.coord
            break
        end
    end
    
    % Pick the closest node from existing list to branch out from
    ndist = [];
    for j = 1:1:length(nodes)
        n = nodes(j);
        tmp = dist(n.coord, q_rand);
        ndist = [ndist tmp];
    end
    [val, idx] = min(ndist);
    q_near = nodes(idx);
    
    q_new.coord = steer(q_rand, q_near.coord, val, EPS);
    if noCollision(q_rand, q_near.coord, obstacle)
        line([q_near.coord(1), q_new.coord(1)], [q_near.coord(2), q_new.coord(2)], 'Color', 'k', 'LineWidth', 2);
        drawnow
        hold on
        q_new.cost = dist(q_new.coord, q_near.coord) + q_near.cost;
        
        % Within a radius of r, find all existing nodes
        q_nearest = [];
        r = 60;
        neighbor_count = 1;
        for j = 1:1:length(nodes)
            if noCollision(nodes(j).coord, q_new.coord, obstacle) && dist(nodes(j).coord, q_new.coord) <= r
                q_nearest(neighbor_count).coord = nodes(j).coord;
                q_nearest(neighbor_count).cost = nodes(j).cost;
                neighbor_count = neighbor_count+1;
            end
        end
        
        % Initialize cost to currently known value
        q_min = q_near;
        C_min = q_new.cost;
        
        % Iterate through all nearest neighbors to find alternate lower
        % cost paths
        
        for k = 1:1:length(q_nearest)
            if noCollision(q_nearest(k).coord, q_new.coord, obstacle) && q_nearest(k).cost + dist(q_nearest(k).coord, q_new.coord) < C_min
                q_min = q_nearest(k);
                C_min = q_nearest(k).cost + dist(q_nearest(k).coord, q_new.coord);
                line([q_min.coord(1), q_new.coord(1)], [q_min.coord(2), q_new.coord(2)], 'Color', 'g');                
                hold on
            end
        end
        
        % Update parent to least cost-from node
        for j = 1:1:length(nodes)
            if nodes(j).coord == q_min.coord
                q_new.parent = j;
            end
        end
        
        % Append to nodes
        nodes = [nodes q_new];
    end
end

D = [];
for j = 1:1:length(nodes)
    tmpdist = dist(nodes(j).coord, q_goal.coord);
    D = [D tmpdist];
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] LaValle, S. M., ‘Rapidly-Exploring Random Trees: A New Tool for Path Planning’, TR 98-11, Computer Science Department, Iowa State University, Oct. 1998.
[2] Karaman, Sertac, and Emilio Frazzoli. "Incremental sampling-based algorithms for optimal motion planning." Robotics Science and Systems VI 104 (2010).

[3]莫栋成,刘国栋.改进的快速探索随机树双足机器人路径规划算法[J].计算机应用, 2013, 33(01):199-201.DOI:10.3724/SP.J.1087.2013.00199.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/62603.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

哪些情况需要用到云渲染?原来云渲染有这么多好处!

当前&#xff0c;CG行业发展迅猛&#xff0c;云渲染已成为越来越多的设计师必不可少的工具。在许多情况下&#xff0c;云渲染都能发挥重要的作用。 情况1&#xff1a;项目时间紧急 在当今繁忙的设计行业中&#xff0c;许多设计师需要通宵加班才能完成繁琐的工作。然而&#xf…

跨境做独立站,如何低成本引流?

大家都知道&#xff0c;海外的消费习惯与国内不同&#xff0c;独立站一向是海外消费者的最喜欢的购物方式之一&#xff0c;这也吸引了许多跨境商家开设独立站。 独立站不同于其他的第三方平台&#xff0c;其他平台可以靠平台自身流量来获得转化&#xff0c;而独立站本身没有流…

Git结合Gitee的企业开发模拟

本系列有两篇文章&#xff1a; 一是另外一篇《快速使用Git完整开发》&#xff0c;主要说明了关于Git工具的基础使用&#xff0c;包含三板斧&#xff08;git add、git commit、git push&#xff09;、Git基本配置、版本回退、分支管理、公钥与私钥、远端仓库和远端分支、忽略文…

桌面端后台项目笔记

套用模板 vue-pure-admin 所用主要框架笔记 1. electron app const { app } require(electron) app.on(事件名, () > {} // 回调函数)常用事件 will-finish-launching 当应用程序完成基础的启动的时候触发ready&#xff1a;electron完成初始化时触发window-all-close…

什么是 TF-IDF 算法?

简单来说&#xff0c;向量空间模型就是希望把查询关键字和文档都表达成向量&#xff0c;然后利用向量之间的运算来进一步表达向量间的关系。比如&#xff0c;一个比较常用的运算就是计算查询关键字所对应的向量和文档所对应的向量之间的 “相关度”。 简单解释TF-IDF TF &…

蒲公英路由器如何设置远程打印?

现如今&#xff0c;打印机已经是企业日常办公中必不可少的设备&#xff0c;无论何时何地&#xff0c;总有需要用到打印的地方&#xff0c;包括资料文件、统计报表等等。 但若人在外地或分公司&#xff0c;有文件急需通过总部的打印机进行打印时&#xff0c;由于不在同一物理网络…

ceph对象三元素data、xattr、omap

这里有一个ceph的原则&#xff0c;就是所有存储的不管是块设备、对象存储、文件存储最后都转化成了底层的对象object&#xff0c;这个object包含3个元素data&#xff0c;xattr&#xff0c;omap。data是保存对象的数据&#xff0c;xattr是保存对象的扩展属性&#xff0c;每个对象…

cortex-A7核LED灯实验--STM32MP157

实验目的&#xff1a;实现LED1 / LED2 / LED3三盏灯工作 一&#xff0c;分析电路图 1&#xff0c;思路 分析电路图可知&#xff1a; 网络编号 引脚编号 LED1 PE10 LED2 > PF10 LED3 > PE8 2&#xff0c;工作原理&#xff1a; 写1&#xff1a;LED灯亮&#xf…

Spring Cloud Alibaba-Sentinel规则

1 流控规则 流量控制&#xff0c;其原理是监控应用流量的QPS(每秒查询率) 或并发线程数等指标&#xff0c;当达到指定的阈值时 对流量进行控制&#xff0c;以避免被瞬时的流量高峰冲垮&#xff0c;从而保障应用的高可用性。 第1步: 点击簇点链路&#xff0c;我们就可以看到访…

一篇文章带你了解-selenium工作原理详解

前言 Selenium是一个用于Web应用程序自动化测试工具。Selenium测试直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。支持的浏览器包括IE&#xff08;7, 8, 9, 10, 11&#xff09;&#xff0c;Mozilla Firefox&#xff0c;Safari&#xff0c;Google Chrome&#xff0c…

RK3562 VS RK3566 性能解析

RK3562是深圳触觉智能最新推出的一款高性能核心板及其开发套件&#xff0c;采用四核A53Mali G52架构&#xff0c;主频2GHz&#xff0c;内置1T NPU算力以及13M ISP&#xff0c;拥有丰富的外围接口。其次在解码方面&#xff0c;支持H.264 1080P60fps、H.265 4K30fps&#xff1b;编…

EMQX启用双向SSL/TLS安全连接以及java连接

作为基于现代密码学公钥算法的安全协议&#xff0c;TLS/SSL 能在计算机通讯网络上保证传输安全&#xff0c;EMQX 内置对 TLS/SSL 的支持&#xff0c;包括支持单/双向认证、X.509 证书、负载均衡 SSL 等多种安全认证。你可以为 EMQX 支持的所有协议启用 SSL/TLS&#xff0c;也可…

cocos 2.4 版本 设置物理引擎步长 解决帧数不一致的设备 物理表现不一致问题 设置帧刷新率

官网地址Cocos Creator 3.8 手册 - 2D 物理系统 官网好像写的不太对 下面是我自己运行好使的 PhysicsManager.openPhysicsSystem()var manager cc.director.getPhysicsManager();// 开启物理步长的设置manager.enabledAccumulator true;// cc.PhysicsManagercc.PhysicsManag…

python+django+协同过滤算法-基于爬虫的个性化书籍推荐系统(包含报告+源码+开题)

为了提高个性化书籍推荐信息管理的效率&#xff1b;充分利用现有资源&#xff1b;减少不必要的人力、物力和财政支出来实现管理人员更充分掌握个性化书籍推荐信息的管理&#xff1b;开发设计专用系统--基于爬虫的个性化书籍推荐系统来进行管理个性化书籍推荐信息&#xff0c;以…

Go Map

学习了GO语言中数组&#xff0c;切片类型&#xff0c;但是我们发现使用数组或者是切片存储的数据量如果比较大&#xff0c;那么通过下标来取出某个具体的数据的时候相对来说&#xff0c;比较麻烦。例如&#xff1a; names : []string{"张三","李四","…

Spring Boot集成MyBatis Plus

文章目录 一、前言二、步骤2.1、步骤 1&#xff1a;创建 Spring Boot 项目2.2、添加依赖2.2.1、基本的Spring和Spring MVC功能2.2.2、MySQL驱动依赖2.2.3、 MyBatis Plus 的依赖 2.3、配置数据库连接2.4、创建实体类2.5、创建 Mapper 接口2.6、编写 Service 层2.7、编写 Contro…

前端vue3+ts架构

1、vue creat 项目名称 选择自定义 选择需要的依赖 选择vue3 一路enter&#xff0c;选择eslistprettier 继续enter&#xff0c;等待安装 按步骤操作&#xff0c;项目启动成功 2、vscode安装5款插件 2、代码保存自动格式化&#xff0c;保证每个开发人员代码一致&#xff0c;根目…

数据结构体--5.0图

目录 一、定义 二、图的顶点与边之间的关系 三、图的顶点与边之间的关系 四、连通图 五、连通图的生成树定义 一、定义 图&#xff08;Graph&#xff09;是由顶点的又穷非空集合合顶点之间边的集合组成&#xff0c;通常表示为&#xff1a;G&#xff08;V&#xff0c;E&…

CSC7203S 应用注意事项

CSC7203S 为高性能电流模式 PWM 开关电源功率转换器&#xff0c;满足绿色环保标准&#xff1b;广泛适用于经济型开关电源&#xff0c;如 DVD、机顶盒、传真机、打印机、LCD 显示器等。CSC7203S采用SOP-8封装。  内置 700V 高压功率开关管  输入电压&#xff08;85V~265V&a…

Gitlab创建一个空项目

1. 创建项目 Project slug是访问地址的后缀&#xff0c;跟前边的ProjectUrl拼在一起&#xff0c;就是此项目的首页地址&#xff1b; Visibility Level选择默认私有即可&#xff0c;选择内部或者公开&#xff0c;就会暴露代码。 勾选Readme选项&#xff0c;这样项目内默认会带…