写在前面
- 参考链接:objectdetection-tricks/tricks_4.py
- 相关视频教学:tricks_4 用于yolov5和v7中的yolo格式转换coco格式的脚本.(如何在v5和v7中输出ap_small,ap_middle,ap_large coco指标)
- 还可以参考相关的VOC转COCO的方式:damo-yolo/voc2coco.py
- 代码效果:将数据集转成COCO格式,单个文件夹转为单个json文件,例如…/images/train转为instance_train.json
- 我的数据集排布:
datasets
├─images
│ ├─test
│ ├─train
│ └─val
├─annotations├─test├─train└─val
代码
- 指定好四个参数即可
--root_dir
:待转换的图像的路径,例如我传入的是训练集的路径...\images\train
--save_dir
:保存转换后的json文件的路径,通常都是存放在数据集的annotations
子文件下的--classtxt_path
:存放类别的文件路径--save_name
:转换后的json文件名
import os
import cv2
import json
from tqdm import tqdm
import argparseparser = argparse.ArgumentParser()
parser.add_argument('--root_dir', default=r'F:\A_Publicdatasets\RDD2020-1202\train_valid\RDD2020_together\images\test', type=str, help="root path of images and labels, include ./images and ./labels and classes.txt")
parser.add_argument('--save_dir', type=str, default=r'F:\A_Publicdatasets\RDD2020-1202\train_valid\RDD2020_together\annotations', help="if not split the dataset, give a path to a json file")
parser.add_argument('--classtxt_path', type=str, default=r'G:\pycharmprojects\autodl-yolov7\yolov7-main-biyebase\TXTOCOCO\classes.txt', help="class filepath")
parser.add_argument('--save_name', type=str, default='instances_test.json', help="建议只修改后面的train为val、test等,否则自行改代码")arg = parser.parse_args()def yolo2coco(arg):with open(arg.classtxt_path, 'r') as f: classes = list(map(lambda x: x.strip(), f.readlines()))indexes = []imagesdir = arg.root_dirfor file in os.listdir(imagesdir):indexes.append(f'{imagesdir}/{file}') '''下面这段代码是对我自己有用的,看官可将其删除正常的文件排布应该为:-- images--- train--- val--- test而我的是:-- images--- Czech---- train---- val---- test--- India ...--- Japan ...'''dataset = {'categories': [], 'annotations': [], 'images': []}for i, cls in enumerate(classes, 0):dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})ann_id_cnt = 0for k, index in enumerate(tqdm(indexes)):txtPath = index.replace('images', 'labels').replace('.jpg', '.txt')im = cv2.imread(index)imageFile = index.split('/')[-1] height, width, _ = im.shapeif not os.path.exists(txtPath):continuedataset['images'].append({'file_name': imageFile,'id': k,'width': width,'height': height})with open(txtPath, 'r') as fr:labelList = fr.readlines()for label in labelList:label = label.strip().split()x = float(label[1])y = float(label[2])w = float(label[3])h = float(label[4])H, W, _ = im.shapex1 = (x - w / 2) * Wy1 = (y - h / 2) * Hx2 = (x + w / 2) * Wy2 = (y + h / 2) * Hcls_id = int(label[0])width = max(0, x2 - x1)height = max(0, y2 - y1)dataset['annotations'].append({'area': width * height,'bbox': [x1, y1, width, height],'category_id': cls_id,'id': ann_id_cnt,'image_id': k,'iscrowd': 0,'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]})ann_id_cnt += 1save_path = os.path.join(arg.save_dir, arg.save_name)with open(save_path, 'w') as f:json_str = json.dumps(dataset)f.write(json_str)print('Save annotation to {}'.format(save_path))if __name__ == "__main__":yolo2coco(arg)