GPT编程:运行你的第一个聊天程序

环境搭建

很多机器学习框架和类库都是使用Python编写的,OpenAI提供的很多例子也是Python编写的,所以为了方便学习,我们这个教程也使用Python。

Python环境搭建

Python环境搭建有很多种方法,我们这里需要使用 Python 3.10 的环境,如果你已经具备或者自己很清楚怎么搭建,请跳过这个小节。

Anaconda安装

Anaconda 可以简单理解为一个软件包管理器,通过它我们可以方便的管理Python运行环境。

Anaconda 的官方下载地址是:https://www.anaconda.com/download,页面如下图所示:

请注意选择你使用的操作系统,整个安装包有800多M,下载时间取决于你的网路。

Anaconda 的安装比较简单,但是安装中间还需要下载很多程序,所以需要的时间可能会久一点;另外全部安装完毕后,可能会占用5G多的硬盘空间,需要提前预留好。

Anaconda 集成了一些方便的工具,安装完成后,我们可以使用 Anaconda Navigator 来启动它们。在Windows系统下,我们可以在开始菜单中找到这个 Anaconda Navigator,就是下面图片中的这个。

JupyterLab

启动 Anaconda Navigator 后,在右边的应用列表中找到 JupyterLab。

JupyterLab 是一个Web的交互式计算窗口,能在网页中运行Python程序,可以省掉很多麻烦。

启动后,窗口界面如下所示。左边是当前用户的根目录,右边有一些功能入口,我们先不管。

我们在左侧根目录下点击右键创建一个文件夹:gptdemo,名字可以随便起,后边我们的程序都放到这里边。

然后我们双击进入 gptdemo,再点击右键创建一个 Notebook,Notebook 可以记录文字、编写代码并执行。

在左侧文件夹中双击新创建的Notebook,它会在右侧编辑区打开,在工具栏的“Cell Type”中选择“Code”,然后点击工具栏前边的加号(+),Notebook中就会自动创建一个代码Cell,这种Cell既可以运行Python代码,也可以执行各种Shell指令。

安装OpenAI包

执行下边的命令,安装openai的python sdk。

pip install --upgrade openai httpx[socks]

这个只需要安装成功一次就行了。

下图是JupyterLab中的命令执行效果演示:

代码演练

下边进入本文的重点,运行一个GPT程序。

在这个程序中,我们还是让 GPT 扮演一个善于出题的小学数学老师。

可以先把下边的代码粘贴到你的开发环境中运行一下,后面我会解释各个参数。

注意替换 api_key,没有的可以去注册一个或者找人购入一个。

from openai import OpenAIclient = OpenAI(api_key='sk-xxx')
stream = client.chat.completions.create(messages=[{"role": "system", "content": "你是一名数学老师,从事小学数学教育30年,精通设计各种数学考试题"},{"role": "user", "content": "你是谁?请以json返回"}],model='gpt-3.5-turbo-1106',max_tokens:1024,#temperature=0.1,top_p=0.3,#frequency_penalty=0.5,presence_penalty=0.2,seed=12345,#stop='30年',response_format={ "type": "json_object" },n=1,stream=True
)for chunk in stream:msg = chunk.choices[0].delta.contentif msg is not None:print(msg, end='')

我们需要先创建一个客户端:client = OpenAI(api_key='sk-xxx'),注意替换其中的 api-key。

然后我们使用 client.chat.completions.create 来创建一个聊天 Completion。Completion这个单词怎么理解呢?这有点类似搜索框中的那种联想输入,我们输入部分字符,它就会生成一组补全的查询词语列表,这个技术叫:Auto Complete。

理解Token

因为很多参数都涉及到Token的概念,所以在开始介绍参数之前,我们先来理解下 Token 这个概念。

在大模型中,模型的输入和输出实际都是Token。Token不是完全对照到单词或者字符的,大模型处理数据时,文本会被切分成单个元素或标记,也就是Token,这些Token可能是单词、字符或单词的一部分。

大模型使用Token而不是直接使用单词或字符的原因主要是效率、灵活性和性能的问题。例如大词汇表会导致模型参数数量剧增,增加内存需求和计算成本,而使用子词可以降低词汇表的大小,特别是含有大量专有名词的语料库,同时子词还可以避免单个字符携带信息可能过少,导致需要处理更长序列才能理解文本的问题。另外子词对于一些语言还具备跨语言表示的能力,子词还可以让模型更好地学习和理解单词的形态变化和复杂的词形构造规则。

比如对于这个句子:I don't like cats.

其拆分后的Token序列可能是:["I", "do", "n't", "like", "cats", "."]

注意,不同的模型可能会采用不同的切分方法。

completion参数

然后我们看下这几个参数:

  • messages:聊天的上下文,里边可以包含多条消息。GPT会针对最后一条消息,结合上下文,生成文本内容。每条消息可以设定role、name、content。
    • role:就是会话中的角色,可以选择:system(系统)、assistant(GPT)、user(用户)
    • name:用来区分同一个角色中的不同人物。
    • content:具体角色发出的消息内容。
  • model:本次会话使用的GPT模型,最新的3.5模型是 gpt-3.5-turbo-1106,训练数据截止2021年9月份,上下文窗口的最大token数为16K;最新的4模型是gpt-4-1106-preview,训练数据截止2023年4月份,上下文窗口的最大token数为128K。
  • max_tokens:本次Completion允许生成的最大token数量,token数量和字符数量实际上不是对等的,不过也可以简单的认为就是字符数量。messages中输入的token数量和生成的token数量不能超过模型上下文窗口的最大token数量。
  • temperature:生成时对token进行采样的温度,取值范围为 0-2 的float,默认值为1。值越小输出越确定,值越大输出越随机,可能会跳出上下文约束,甚至输出不可读的乱七八糟字符。
  • top_p:temperature 的替代方法,称为核采样。取值范围为 0-1 的float,默认值为1。模型考虑具有top_p概率质量的标记的结果,比如 0.1 表示仅考虑概率最大的前10%的token。注意不要同时更改 temperature 和 top_p。
  • frequency_penalty:频率惩罚,用于降低生成重复token的可能性,它基于相关token出现的频率产生影响。取值范围 -2.0 到 2.0 ,默认值为0。一般限制重复时建议设置为0.1-1,强烈限制重复可设置为2,但是生成的质量可能会比较低,负值可用于增加重复。
  • presence_penalty:存在惩罚,也是用于降低生成重复token的可能性,和频率惩罚相比,它跟踪的是相关token有没有出现过至少一次。取值范围 -2.0 到 2.0,默认值为0。一般限制重复时建议设置为0.1-1,强烈限制重复可设置为2,但是生成的质量可能会比较低,负值可用于增加重复。
  • seed:这个参数是为了尽可能的提高输出的确定性。使用相同的种子和相同的其它参数,会尽可能的输出相同的结果。
  • stop:GPT生成文字时,遇到这些字符会停止继续生成。最多4个字符。
  • response_format:生成文本的格式。虽然我们也可以在聊天内容中直接要求以某种格式返回,但是这是没有保障的,也可能返回别的格式,但是如果再加上这个参数,就可以确保生成内容的格式了。
  • n:一次返回几条结果,默认为1。使用时建议设置 stream=false,可以从 choices 中获取多条结果。
  • stream:流式输出与否,一般都采用流式输出,看着比较像真人说话。

看下这个运行效果吧:


以上就是本文的主要内容,GPT编程是不是挺简单的?!

后续我还会继续分享图片、插件、语音等API的使用方法。

关注萤火架构,加速技术提升!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/623297.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一二三应用开发平台文件处理设计与实现系列之5——MinIO技术预研

背景 上篇介绍了文件读写框架设计与实现,同时顺便说明了本地磁盘存储模式的实现模式。 今天来说下基于文件读写框架,如何集成对象存储组件minio,集成之前,需要对minio进行必要的了解,本篇是minio的技术预研。 minio简…

两个Mesh路由、一个5口交换机,打造智能家居无缝网络覆盖

在现代家庭中,无线网络已经成为了必需品,每个人都希望享受到无缝连接的畅快体验。然而,由于信号覆盖范围的限制和信号干扰等问题,很多家庭在组网方面遇到了一些困难。 对于有需求的家庭而言,两个Mesh路由器是一种非常…

Linux|centos7操作系统|VMware虚拟机安装水星免驱USB网卡8188gu记录

引言: 最近对于嵌入式系统比较感兴趣,因此,计划先使用VMware workstation虚拟机试一试Linux系统下的网卡驱动安装 这不试不知道,一试吓一跳,发现Linux下的驱动安装还是比较麻烦的,下面将就本次的Linux系统…

机器学习 | 卷积神经网络

机器学习 | 卷积神经网络 实验目的 采用任意一种课程中介绍过的或者其它卷积神经网络模型(例如LeNet-5、AlexNet等)用于解决某种媒体类型的模式识别问题。 实验内容 卷积神经网络可以基于现有框架如TensorFlow、Pytorch或者Mindspore等构建&#xff…

格密码基础:SIS问题的困难性

目录 一. SIS问题的困难性 二. SIS问题归约的性质 2.1 2004年 [MR04] 2.2 2008年 【GPV08】 2.3 2013年【MP13】 三. 归约证明 3.1 核心理解 3.2 归约步骤 3.3 性质理解 一. SIS问题的困难性 推荐先阅读: 格密码基础:SIS问题的定义与理解-CSD…

专业课140总分410+大连理工大学852信号与系统考研经验电子信息与通信

通过将近一年的复习,今年如愿以专业140分,总分410被大连理工录取,回望这一年复习还是有很多做的不足,整理了一下自己复习的经验,希望可以对后面报考大连理工的同学有所帮助。●政治: 真心建议大家至少暑假…

python 列表的高级应用

当前版本: Python 3.8.4 简介 列表(list)是Python编程语言中的基本数据类型之一,也是一个非常重要的通用序列。在其它编程语言中,它们通常被称为“数组”。可以存储多个元素,包括数字、字符串、甚至其他列…

【RPC】序列化:对象怎么在网络中传输?

今天来聊下RPC框架中的序列化。在不同的场景下合理地选择序列化方式,对提升RPC框架整体的稳定性和性能是至关重要的。 一、为什么需要序列化? 首先,我们得知道什么是序列化与反序列化。 网络传输的数据必须是二进制数据,但调用…

(菜鸟自学)搭建虚拟渗透实验室——安装Ubantu 8.10 靶机

安装Ubantu 8.10 靶机 新建虚拟机 选择Ubuntu系统 网络适配器模式选用桥接模式 镜像选用ubuntu8.10版本 点击“开启此虚拟机”以开始安装Ubuntu Linux系统 安装ubuntu 首先需要选择安装时的语言,这里选择“中文(简体)” 选择“安装…

Pushmall智能AI数字名片— —SCRM客户资源管理系统

推贴数字AI名片说明: **Pushmall智能AI数字名片:**基于靠谱人脉的地理位置服务,资源查询,数字名片定制服务、企业名片:相互引荐、提供需求;建人脉群、客户群,及简介、短视频、宣传文档、电子图…

上海亚商投顾:创业板指冲高回落 光伏、航运股逆势走强

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 沪指1月12日冲高回落,创业板指午后跌近1%。北证50指数跌超6%,倍益康、华信永道、众诚科…

Python基础知识:整理15 列表的sort方法

1 sorted() 方法 之前我们学习过 sorted() 方法,可以对列表、元组、集合及字典进行排序 # 1.列表 ls [1, 10, 8, 4, 5] ls_new sorted(ls, reverseTrue) print(ls_new) …

【软件测试】学习笔记-性能测试的基本方法与应用领域

这篇文章探讨并发用户数、响应时间和系统吞吐量这三个指标之间的关系和约束,性能测试七种常用方法,以及四大应用领域。 由于性能测试是一个很宽泛的话题,所以不同的人对性能测试的看法也不完全一样,同样一种方法可能也会有不同的…

基于鸿蒙HarmonyOS 元服务开发一款公司运营应用(ArkTS API 9)

前言 最近基于Harmony OS最新版本开发了一个作品,本文来详细讲解一下,如何我是如何开发这个作品的。以及如何使用OpenHarmony,基于ArkTS,API 9来开发一个属于自己的元服务。 废话不多说,我的作品名称叫做Company Oper…

Softmax回归(多类分类模型)

目录 1.对真实值类别编码:2.预测值:3.目标函数要求:4.使用Softmax模型将输出置信度Oi计算转换为输出匹配概率y^i:5.使用交叉熵作为损失函数:6.代码实现: 1.对真实值类别编码: y为真实值&#xf…

Python——VScode安装

⼀、下载安装 [root192 ~]# rpm --import https://packages.microsoft.com/keys/microsoft.asc[root192 ~]# sh -c echo -e "[code]\nnameVisualStudio Code\nbaseurlhttps://packages.microsoft.com/yumrepos/vscode\nenabled1\ngpgcheck1\ngpgkeyhttps://packages.mi…

PXIe‑6378国产替代,16路AI(16位,3.5 MS/s/ch),4路AO,48路DIO,PXI多功能I/O模块

PXIe,16路AI(16位,3.5 MS/s/ch),4路AO,48路DIO,PXI多功能I/O模块 PXIe‑6378是一款同步采样的多功能DAQ设备。 该模块提供了模拟 I/O、数字I/O、四个32位计数器和模拟和数字触发。 板载NI‑STC3…

Odrive 学习系列二:将烧录工具从ST-Link V2修改为JLink

一、背景: 通过观察odrive解压后的内容,可以看到在下面配置文件及makefile文件中的配置设置的均为openOCD + stlink v2,例如makefile中: # This is only a stub for various commands. # Tup is used for the actual compilation.BUILD_DIR = build FIRMWARE = $(BUILD_DI…

PCL ISS关键点提取(C++详细过程版)

边界提取 一、概述二、代码实现三、结果展示PCL ISS关键点提取(C++详细过程版)由CSDN点云侠原创,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 ISS关键点提取在PCL里有现成的调用函数,具体算法原理和实现代码见:PCL ISS关键点提…

基于Xilinx K7-410T的高速DAC之AD9129开发笔记(二)

引言:上一篇文章我们简单介绍了AD9129的基础知识,包括芯片的重要特性,外部接口相关的信号特性等。本篇我们重点介绍下项目中FPGA与AD9129互联的原理图设计,包括LVDS IO接口设计、时钟电路以、供电设计以及PCB设计。 LVDS数据接口设…