K 个一组翻转链表(链表反转,固定长度反转)(困难)

优质博文:IT-BLOG-CN

一、题目

给你链表的头节点head,每k个节点一组进行翻转,请你返回修改后的链表。

k是一个正整数,它的值小于或等于链表的长度。如果节点总数不是k的整数倍,那么请将最后剩余的节点保持原有顺序。

你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。

示例1:

输入:head = [1,2,3,4,5], k = 2
输出:[2,1,4,3,5]

示例2:

输入:head = [1,2,3,4,5], k = 3
输出:[3,2,1,4,5]

二、代码

【1】先实现链表的反转功能

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseKGroup(ListNode head) {// 1、第一个考查点:反转链表ListNode pre = null;ListNode cur = head;// 用户暂时保存next的值;ListNode nxt = null;// 遍历链表进行翻转while(cur != null) {nxt = cur.next;cur.next = pre;pre = cur;cur = nxt;}// 在原链表上看,pre指向tail节点,cur指向pre下一个节点return pre;}
}

【2】实现指定长度数据的反转

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseKGroup(ListNode head, int left, int right) {// 主要作用:保留开始反转节点的上一个节点ListNode headPre = new ListNode(0, head);// 后面会不断更新,直至需要反转ListNode p0 = headPre;// 先遍历不反转的部分for (int i = 1; i < left; i++) {p0 = p0.next;}// 1、第一个考查点:反转链表ListNode pre = null;// 这里不再指向头节点,指向开始反转的节点ListNode cur = p0.next;// 用户暂时保存next的值;ListNode nxt = null;// 遍历链表进行翻转for (int i = 0; i < right - left + 1; i++) {if ( cur != null ) {nxt = cur.next;cur.next = pre;pre = cur;cur = nxt;}}// 在原链表上看,pre指向tail节点,cur指向pre下一个节点// 将 pre节点放入 p0的next节点p0.next.next = cur;p0.next = pre;return headPre;}
}

【3】实现k位反转,不足k位不反转

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseKGroup(ListNode head, int k) {// 1、计算中记录数ListNode countList = head;int count = 0;while(countList != null) {count++;countList = countList.next;}// 主要作用:保留开始反转节点的上一个节点ListNode dummp = new ListNode(0, head);ListNode p0 = dummp;// 2、第一个考查点:反转链表while (k <= count) {// 循环推出条件count -= k;ListNode pre = null;ListNode cur = p0.next;// 遍历链表进行翻转for(int i = 0; i<k; i++) {// 用户暂时保存next的值;ListNode  nxt = cur.next;cur.next = pre;pre = cur;cur = nxt;}// 3、倒序后重新串联ListNode p0Next = p0.next;p0.next.next = cur;p0.next = pre;p0 = p0Next;}// 在原链表上看,pre指向tail节点,cur指向pre下一个节点return dummp.next;}
}

说明:自己尝试画图理解,否则不容易理解,附视频讲解

【3】模拟: 本题的目标非常清晰易懂,不涉及复杂的算法,但是实现过程中需要考虑的细节比较多,容易写出冗长的代码。主要考查面试者设计的能力。

我们需要把链表节点按照k个一组分组,所以可以使用一个指针head依次指向每组的头节点。这个指针每次向前移动k步,直至链表结尾。对于每个分组,我们先判断它的长度是否大于等于k。若是,我们就翻转这部分链表,否则不需要翻转。

接下来的问题就是如何翻转一个分组内的子链表但是对于一个子链表,除了翻转其本身之外,还需要将子链表的头部与上一个子链表连接,以及子链表的尾部与下一个子链表连接

因此,在翻转子链表的时候,我们不仅需要子链表头节点head,还需要有head的上一个节点pre,以便翻转完后把子链表再接回pre

但是对于第一个子链表,它的头节点head前面是没有节点pre的。太麻烦了!难道只能特判了吗?答案是否定的。没有条件,我们就创造条件;没有节点,我们就创建一个节点。我们新建一个节点,把它接到链表的头部,让它作为pre的初始值,这样head前面就有了一个节点,我们就可以避开链表头部的边界条件。这么做还有一个好处,下面我们会看到。

反复移动指针headpre,对head所指向的子链表进行翻转,直到结尾,我们就得到了答案。下面我们该返回函数值了。

有的同学可能发现这又是一件麻烦事:链表翻转之后,链表的头节点发生了变化,那么应该返回哪个节点呢?照理来说,前k个节点翻转之后,链表的头节点应该是第k个节点。那么要在遍历过程中记录第k个节点吗?但是如果链表里面没有k个节点,答案又还是原来的头节点。我们又多了一大堆循环和判断要写,太崩溃了!

等等!还记得我们创建了节点pre吗?这个节点一开始被连接到了头节点的前面,而无论之后链表有没有翻转,它的next指针都会指向正确的头节点。那么我们只要返回它的下一个节点就好了。至此,问题解决。

class Solution {public ListNode reverseKGroup(ListNode head, int k) {ListNode hair = new ListNode(0);hair.next = head;ListNode pre = hair;while (head != null) {ListNode tail = pre;// 查看剩余部分长度是否大于等于 kfor (int i = 0; i < k; ++i) {tail = tail.next;if (tail == null) {return hair.next;}}ListNode nex = tail.next;ListNode[] reverse = myReverse(head, tail);head = reverse[0];tail = reverse[1];// 把子链表重新接回原链表pre.next = head;tail.next = nex;pre = tail;head = tail.next;}return hair.next;}public ListNode[] myReverse(ListNode head, ListNode tail) {ListNode prev = tail.next;ListNode p = head;while (prev != tail) {ListNode nex = p.next;p.next = prev;prev = p;p = nex;}return new ListNode[]{tail, head};}
}

时间复杂度: O(n),其中n为链表的长度。head指针会在O(⌊nk⌋)个节点上停留,每次停留需要进行一次O(k)的翻转操作。
空间复杂度: O(1),我们只需要建立常数个变量。

**【4】栈:**我们把k个数压入栈中,然后弹出来的顺序就是翻转的!剩下的链表个数够不够k个(因为不够k个不用翻转);已经翻转的部分要与剩下链表连接起来。

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode(int x) { val = x; }* }*/
class Solution {public ListNode reverseKGroup(ListNode head, int k) {Deque<ListNode> stack = new ArrayDeque<ListNode>();ListNode dummy = new ListNode(0);ListNode p = dummy;while (true) {int count = 0;ListNode tmp = head;while (tmp != null && count < k) {stack.add(tmp);tmp = tmp.next;count++;}if (count != k) {p.next = head;break;}while (!stack.isEmpty()){p.next = stack.pollLast();p = p.next;}p.next = tmp;head = tmp;}return dummy.next;}
}

尾插法

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode(int x) { val = x; }* }*/
class Solution {public ListNode reverseKGroup(ListNode head, int k) {ListNode dummy = new ListNode(0);dummy.next = head;ListNode pre = dummy;ListNode tail = dummy;while (true) {int count = 0;while (tail != null && count != k) {count++;tail = tail.next;}if (tail == null) break;ListNode head1 = pre.next;while (pre.next != tail) {ListNode cur = pre.next;pre.next = cur.next;cur.next = tail.next;tail.next = cur;}pre = head1;tail = head1;}return dummy.next;}
}

递归

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode(int x) { val = x; }* }*/
class Solution {public ListNode reverseKGroup(ListNode head, int k) {ListNode cur = head;int count = 0;while (cur != null && count != k) {cur = cur.next;count++;}if (count == k) {cur = reverseKGroup(cur, k);while (count != 0) {count--;ListNode tmp = head.next;head.next = cur;cur = head;head = tmp;}head = cur;}return head;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/623087.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

优先级队列(Priority Queue)

文章目录 优先级队列&#xff08;Priority Queue&#xff09;实现方式基于数组实现基于堆实现方法实现offer(E value)poll()peek()isEmpty()isFull() 优先级队列的实现细节 优先级队列&#xff08;Priority Queue&#xff09; 优先级队列是一种特殊的队列&#xff0c;其中的元素…

Spring Boot - 利用Resilience4j-RateLimiter进行流量控制和服务降级

文章目录 Resilience4j概述Resilience4j官方地址Resilience4j-RateLimiter微服务演示Payment processorPOM配置文件ServiceController Payment servicePOMModelServiceRestConfigController配置验证 探究 Rate Limiting请求三次 &#xff0c;观察等待15秒连续访问6次 Resilienc…

【Python小技巧】安装ImageMagick配置环境变量解决moviepy报错问题

文章目录 前言一、报错ImageMagick 找不到二、解决步骤1. 安装ImageMagick2. 配置IMAGEMAGICK_BINARY环境变量 总结 前言 抽空玩玩moviepy&#xff0c;结果合成视频时报错&#xff0c;看着网上的解决办法&#xff0c;真是复杂&#xff0c;这里就给出个简单便捷的方法。 一、报…

Puppeteer让你网页操作更简单(1)屏幕截图

网页自动化设计爬虫工具 中就使用了Puppeteer进行对网页自动化处理&#xff0c;今天就来看看它是什么东西&#xff01; 我们将学习什么? 在本教程中,您将学习如何使用JavaScript自动化和抓取 web。 为此,我们将使用Puppeteer。 Puppeteer是一个Node库API,允许我们控制无头Ch…

Clickhouse表引擎之CollapsingMergeTree引擎的原理与使用

前言 继续上次关于clickhouse的一些踩坑点&#xff0c;今天讲讲另外一个表引擎——CollapsingMergeTree。这个对于引擎对于数据量较大的场景是个不错的选择。注意&#xff0c;选择clickhouse的一般原因都是为了高效率查询&#xff0c;提高用户体验感&#xff0c;说白了就是以空…

MySQL单表的查询练习

作业要求&#xff1a; 作业实现&#xff1a; 首先&#xff0c;创建worker表并插入相关数据 CREATE TABLE worker (部门号 int(11) NOT NULL,职工号 int(11) NOT NULL,工作时间 date NOT NULL,工资 float(8,2) NOT NULL,政治面貌 varchar(10) NOT NULL DEFAULT 群众,姓名 varc…

OpenJDK 和 OracleJDK 哪个jdk更好更稳定,正式项目用哪个呢?关注者

OpenJDK 和 OracleJDK&#xff1a;哪个JDK更好更稳定&#xff0c;正式项目应该使用哪个呢&#xff1f;我会从&#xff0c;从开源性质、更新和支持、功能差异等方面进行比较&#xff0c;如何选择&#xff0c;哪个jdk更好更稳定&#xff0c;正式项目用哪个呢&#xff0c;进行比较…

关于java类与对象的创建

关于java类与对象的创建 我们在前面的文章中回顾了方法的定义和方法的调用&#xff0c;以及了解了面向对象的初步认识&#xff0c;我们本篇文章来了解一下类和对象的关系&#xff0c;还是遵循结合现实的方式去理解&#xff0c;不是死记硬背&#x1f600;。 1、类 类是一种抽…

【InternLM 大模型实战】第五课

LMDeploy 大模型量化部署实践 大模型部署背景模型部署定义&#xff1a;产品形态计算设备 大模型特点内存开销巨大动态shape相对视觉模型&#xff0c;LLM结构简单 大模型部署挑战设备推理服务 大模型部署方案技术点方案云端移动端 LMDeploy 简介高效推理引擎完备易用的工具链支持…

环境配置注解 @PostConstruct作用以及在springboot框架中的加载时间

作用 PostConstruct 是 Java EE 5 引入的一个注解&#xff0c;用于 Spring 框架中。它标记在方法上&#xff0c;以表示该方法应该在对象的依赖注入完成后&#xff0c;并且在类的任何业务方法被调用之前执行。这个注解的主要用途是进行一些初始化工作。需要注意的是&#xff1a;…

统计学-R语言-4.5

文章目录 前言多变量数据多维列联表复式条形图并列箱线图R语言中取整运算主要包括以下五种&#xff1a; 点带图多变量散点图重叠散点图矩阵式散点图 练习 前言 本篇文章将继续对数据的类型做介绍&#xff0c;本片也是最后一个介绍数据的。 多变量数据 掌握描述多变量数据的分…

CDN内容分发网络

1、CDN的含义 1.1 什么是CDN&#xff1f; CDN是内容分发网络&#xff08;Content Delivery Network&#xff09;的缩写。它是一种通过将内容部署到全球各地的服务器节点&#xff0c;使用户能够快速访问和下载内容的网络架构。 简单来说&#xff0c;CDN通过将内容分发到离用户更…

Redis-redis.conf配置文件中的RDB与AOF持久化方式的详解与区别

RDB&#xff08;Redis Database&#xff09; RDB是Redis的默认持久化方式&#xff0c;它将内存中的数据以二进制格式写入磁盘&#xff0c;形成一个快照。RDB持久化有以下几个重要的配置选项&#xff1a; save&#xff1a;指定了保存RDB的策略&#xff0c;默认的配置是每900秒&…

SpringCloud:Gateway服务网关

文章目录 Gateway服务网关快速入门断言工厂默认过滤器自定义过滤器过滤器执行顺序跨域问题处理 Gateway服务网关 网关&#xff08;Gateway&#xff09;是将两个使用不同协议的网络段连接在一起的设备。 网关的作用就是对两个网络段中的使用不同传输协议的数据进行互相的翻译转换…

案例123:基于微信小程序的在线订餐系统的设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder …

CSS 雷达监测效果

<template><view class="center"><view class="loader"><view></view></view></view></template><script></script><style>/* 设置整个页面的背景颜色为深灰色 */body {background-col…

Zookeeper使用详解

介绍 ZooKeeper是一个分布式的&#xff0c;开放源码的分布式应用程序协调服务&#xff0c;是Google的Chubby一个开源的实现&#xff0c;是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件&#xff0c;提供的功能包括&#xff1a;配置维护、域名服务、分布…

1127: 矩阵乘积

题目描述 计算两个矩阵A和B的乘积。 输入 第一行三个正整数m、p和n&#xff0c;0<m,n,p<10&#xff0c;表示矩阵A是m行p列&#xff0c;矩阵B是p行n列&#xff1b; 接下来的m行是矩阵A的内容&#xff0c;每行p个整数&#xff0c;用空格隔开&#xff1b; 最后的p行是矩…

SpringFramework实战指南(一)

SpringFramework实战指南&#xff08;一&#xff09; 一、技术体系结构1.1 总体技术体系1.2 框架概念和理解 一、技术体系结构 1.1 总体技术体系 单一架构 一个项目&#xff0c;一个工程&#xff0c;导出为一个war包&#xff0c;在一个Tomcat上运行。也叫all in one。 单一架…

Kubernetes (十二) 存储——Volumes配置管理

一. 卷的概念 官方地址&#xff1a;卷 | Kuberneteshttps://v1-24.docs.kubernetes.io/zh-cn/docs/concepts/storage/volumes/ 二. 卷的类型及使用 …