1127: 矩阵乘积

题目描述

计算两个矩阵A和B的乘积。

输入

第一行三个正整数m、p和n,0<=m,n,p<=10,表示矩阵A是m行p列,矩阵B是p行n列;

接下来的m行是矩阵A的内容,每行p个整数,用空格隔开;

最后的p行是矩阵B的内容,每行n个整数,用空格隔开。

输出

输出乘积矩阵:输出占m行,每行n个数据,以空格隔开。

样例输入
2 3 41 0 1
0 0 11 1 1 3
4 5 6 7
8 9 1 0
样例输出
9 10 2 3
8 9 1 0
代码 
#include<stdio.h>
#include<stdlib.h>
int main(){int m,p,n;scanf("%d %d %d",&m, &p,&n);int *matrix1 = (int *)malloc(sizeof(int)*(m*p));int *matrix2 = (int *)malloc(sizeof(int)*(p*n));for(int i=0;i<m;i++){for(int j=0;j<p;j++){scanf("%d", matrix1+i*p+j);}}for(int i=0;i<p;i++){for(int j=0;j<n;j++){scanf("%d", matrix2+i*n+j);}}for(int i=0;i<m;i++){for(int j=0;j<n;j++){int sum = 0;for(int k=0; k<p; k++){sum+=matrix1[i*p+k]*matrix2[k*n+j];}printf("%d ", sum);}printf("\n");}return 0;
}
提交结果截图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/623057.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringFramework实战指南(一)

SpringFramework实战指南&#xff08;一&#xff09; 一、技术体系结构1.1 总体技术体系1.2 框架概念和理解 一、技术体系结构 1.1 总体技术体系 单一架构 一个项目&#xff0c;一个工程&#xff0c;导出为一个war包&#xff0c;在一个Tomcat上运行。也叫all in one。 单一架…

Kubernetes (十二) 存储——Volumes配置管理

一. 卷的概念 官方地址&#xff1a;卷 | Kuberneteshttps://v1-24.docs.kubernetes.io/zh-cn/docs/concepts/storage/volumes/ 二. 卷的类型及使用 …

前端性能优化之数据存取,存储以及缓存技术

无论是哪种计算机语言&#xff0c;说到底它们都是对数据的存取与处理。若能在处理数据前&#xff0c;更快地读取数据&#xff0c;那么必然会对程序执行性能产生积极的作用。 一般而言&#xff0c;js的数据存取有4种方式。 直接字面量:字面量不存储在特定位置也不需要索引&…

spring基于XML方式的组件管理

基本介绍 依赖注入是一种处理对象间依赖关系的技术。在Spring中&#xff0c;依赖注入有构造方法注入和设值注入两种方式。 设值注入是将依赖作为成员变量&#xff0c;通过主调类的setter方法注入依赖。构造方法注入则是在Bean的构造方法中注入依赖。 本次我们将通过具体例子来…

CSC8021_computer network_The Transport Layer

Role of the transport layer • The transport layer is responsible for providing a reliable end-to-end connection between two application processes in a network • Abstracting away the physical subnet • Does not involve intermediate nodes • Takes a netwo…

UML-通信图和交互概览图(通信图和顺序图的区别与联系)

UML-通信图和交互概览图&#xff08;通信图和顺序图的区别与联系&#xff09; 一、通信图简介1.消息2.链接 二、通信图和[顺序图](https://blog.csdn.net/weixin_65032328/article/details/135587782)的联系与区别三、交互概览图四、顺序图转化为通信图练习 一、通信图简介 通…

2.2 物理层

2.2 物理层 2.2.1 物理层的基本概念 1、物理层主要解决在各种传输媒体上传输比特0和1的问题&#xff0c;进而给数据链路层提供透明传输比特流的服务 2、由于传输媒体的种类太多&#xff08;例如同轴电缆、光纤、无线电波等&#xff09;&#xff0c;物理连接方式也有很多例如…

libcurl开源库的编译与使用全攻略

libcurl简介 libcurl 是一个广泛使用的、支持多种协议的、开源的客户端URL传输库&#xff0c;提供了许多用于数据传输的API&#xff0c;例如文件传输、FTP、HTTP、HTTPS、SMTP等。libcurl 的主要特点包括 支持多种协议&#xff1a;libcurl 支持多种协议&#xff0c;如 HTTP、F…

Spring集成

目录 概述1 声朋一个简单的集成流1.1 使用XML定义集成流1.2 使用Java配置集成流1.3 使用Spring lntegration 的 DSL 配置 2 Spring integration 功能概览2.1 消息通道2.2 过滤器2.3 转换器2.4 路由器2.5 切分器2.6 服务激活器2.7 网关2.8 通道适配器2.9 端点模块 概述 就像我们…

JDK8-JDK17版本升级

局部变量类型推断 switch表达式 文本块 Records 记录Records是添加到 Java 14 的一项新功能。它允许你创建用于存储数据的类。它类似于 POJO 类&#xff0c;但代码少得多&#xff1b;大多数开发人员使用 Lombok 生成 POJO 类&#xff0c;但是有了记录&#xff0c;你就不需要使…

逸学Docker【java工程师基础】3.1安装Jenkins

1.下载镜像 docker pull jenkins/jenkins:lts 2.运行容器 docker run -d -u root -p 8080:8080 -p 50000:50000 -v /var/jenkins_home:/var/jenkins_home -v /etc/localtime:/etc/localtime --name jenkins jenkins/jenkins:lts 3.要启动名为 jenkins 的 Docker 容器 docker st…

HarmonyOS-LocalStorage:页面级UI状态存储

管理应用拥有的状态概述 上一个章节中介绍的装饰器仅能在页面内&#xff0c;即一个组件树上共享状态变量。如果开发者要实现应用级的&#xff0c;或者多个页面的状态数据共享&#xff0c;就需要用到应用级别的状态管理的概念。ArkTS根据不同特性&#xff0c;提供了多种应用状态…

OpenGauss源码分析-SQL引擎

所讨论文件大多位于src\common\backend\parser文件夹下 总流程 start_xact_command()&#xff1a;开始一个事务。pg_parse_query()&#xff1a;对查询语句进行词法和语法分析&#xff0c;生成一个或者多个初始的语法分析树。进入foreach (parsetree_item, parsetree_list)循环…

LeetCode 每日一题 Day 37-43

终于考完试了&#xff0c;寒假期间将会每天持续更新&#xff01; 447. 回旋镖的数量(Day 37) 给定平面上 n 对 互不相同 的点 points &#xff0c;其中 points[i] [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 &#xff0c;其中 i 和 j 之间的欧式距离和 i 和 k 之间的欧…

通过开源端点可见性改善网络安全响应

在当今复杂的数字环境中&#xff0c;企业内的许多不同端点&#xff08;从数据中心的服务器到咖啡店的笔记本电脑&#xff09;创建了巨大且多样化的攻击面。每个设备都存在网络安全威胁的机会&#xff0c;每个设备都有其独特的特征和复杂性。攻击者使用的多种攻击媒介不仅是一个…

正则表达式中的“回引用(回溯)”——别名引用与序号引用的差异及正则表达式中的“P”关键字

读到一段巧妙的正则表达式&#xff0c;勾起我对正则表达式欠缺知识点的探寻&#xff1a; P y t h o n Python Python正则表达式中的“回引用(回溯)”——分组别名引用与序号引用的差异及正则表达式中的“P”关键字详情。 (笔记模板由python脚本于2024年01月14日 07:49:35创建&a…

pytorch集智4-情绪分类器

1 目标 从中文文本中识别出句子里的情绪。和上一章节单车预测回归问题相比&#xff0c;这个问题是分类问题&#xff0c;不是回归问题 2 神经网络分类器 2.1 如何用神经网络分类 第二章节用torch.nn.Sequantial做的回归预测器&#xff0c;输出神经元只有一个。分类器和其区别…

QT——connect的第五个参数 Qt::ConnectionType (及qt和c++的多线程的区别)

一直对QT的多线程和c的多线程的区别有疑惑&#xff0c;直到看到文档中这一部分内容才豁然开朗 一.ConnectionType参数的类型和区别 首先是官方文档中对于该枚举值的区别介绍&#xff1a; 对于队列&#xff08;queued &#xff09;连接&#xff0c;参数必须是 Qt 元对象系统已知…

强化学习应用(四):基于Q-learning的物流配送路径规划研究(提供Python代码)

一、Q-learning算法简介 Q-learning是一种强化学习算法&#xff0c;用于解决基于马尔可夫决策过程&#xff08;MDP&#xff09;的问题。它通过学习一个值函数来指导智能体在环境中做出决策&#xff0c;以最大化累积奖励。 Q-learning算法的核心思想是使用一个Q值函数来估计每…

助力工业园区作业违规行为检测预警,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建工业园区场景下作业人员违规行为检测识别系统

在很多工业园区生产作业场景下保障合规合法进行作业生产操作&#xff0c;对于保护工人生命安全降低安全隐患有着非常重要的作用&#xff0c;但是往往在实际的作业生产中&#xff0c;因为一个安全观念的淡薄或者是粗心大意&#xff0c;对于纪律约束等意思薄弱&#xff0c;导致在…