python统计分析——操作案例(模拟抽样)

参考资料:用python动手学统计学

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as snsdata_set=pd.read_csv(r"C:\python统计学\3-4-1-fish_length_100000.csv")['length']    #此处将文件路径改为自己的路径即可

1、抽样

        为了保证数据分析的可复现性,使用了随机种子。

        np.random.choice()的用法参考:https://blog.csdn.net/maizeman126/article/details/135572042

2、计算样本均值

 3、计算总体统计量

         相关函数用法参照:python统计分析——单变量描述统计-CSDN博客

mean_t=np.mean(data_set)
std_t=np.std(data_set,ddof=0)
var_t=np.var(data_set,ddof=0)
max_t=np.max(data_set)
min_t=np.min(data_set)print('总体均值:',mean_t)
print('总体标准差:',std_t)
print('总体方差:',var_t)
print('最大值:',max_t)
print('最小值:',min_t)

4、绘制总体的直方图:

        直方图的绘制参照:

python统计分析——直方图(plt.hist)_python统计直方图-CSDN博客

python统计分析——直方图(sns.histplot)-CSDN博客

python统计分析——直方图(df.hist)_python df.hist()-CSDN博客

sns.set()
sns.histplot(data_set,kde=False,color='black')

        根据总体统计量计算和直方图直观查看,目前可以暂时认为:总体的概率分布服从均值为4,方差为0.64的正态分布,数值的分布范围基本在1-7之间。

5、绘制均值为4,方差为0.64,数据范围为1-7的正态分布的概率密度曲线

5.1 准备1-7上以0.1为公差的等差数列。(注意np.arange函数应用中仍然遵循包左不包右的原则)

x=np.arange(start=1,stop=7.1,step=0.1)

5.2 用stats.norm.pdf计算概率密度。

        stats.norm.pdf()函数中,x为分位数,loc表示均值,scale表示标准差(注意不是方差),结果表示取值x时对应的概率密度。

from scipy import stats
pro_d=stats.norm.pdf(x=x,loc=4,scale=0.8)
pro_d

5.3 绘制概率密度曲线

plt.plot(x,pro_d,color='k')   #k表示颜色black的简写

5.4 将总体直方图和正态分布概率密度函数放到一个中显示:

sns.histplot(data_set,stat='density',kde=False)
plt.plot(x,pro_d,color='k')

      根据上图可以看出:正态分布的概率密度和总体分布的概率密度几乎吻合,因此可以认为总体服从正态分布。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/622998.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构(c)冒泡排序

本文除了最下面的代码是我写的,其余是网上抄写的。 冒泡排序 什么是冒泡排序? 冒泡排序(Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交…

【5G Modem】5G modem架构介绍

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…

概率论与数理统计————1.随机事件与概率

一、随机事件 随机试验:满足三个特点 (1)可重复性:可在相同的条件下重复进行 (2)可预知性:每次试验的可能不止一个,事先知道试验的所有可能结果 (3)不确定…

matlab串口数据交互的使用

一、matlab将串口数据读取并储存到position中 delete(instrfindall);%注销系统之前已经打开的串口资源 clear s %清空s的数据 s serial(COM6,BaudRate,115200);%定义串口及波特率 fopen(s)%打开串口 fwrite(s,00AB,)%向串口写入读取电机位置指令 for i1:8 %共8个电机position…

JVM实战(15)——Full GC调优

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 学习必须往深处挖&…

气象能见度监测站的应用介绍

【TH-NJD10】能见度是反映大气透明度的一个重要指标,对于航空、航海、道路交通等领域具有重要意义。 一、气象能见度监测站的应用 交通气象服务 气象能见度监测站在交通气象服务中发挥着重要作用。在高速公路、机场、港口等交通枢纽,能见度监测数据对于交…

U盘格式化后数据能恢复吗?几个具体解决问题的答案

U盘是一种常见的存储设备,它可以方便我们携带各种文件和数据。但是,当我们不小心将U盘格式化了,里面的数据也将全部都消失。并且,对于一些拥有较多电脑操作技能的用户来讲,格式化删除的数据与普通右击删除的方式相比&a…

机器人制作开源方案 | 乒乓球自动拾取机器人

作者:刘众森、王森、王绘东、崔岳震、宋维鑫 单位:山东农业工程学院 指导老师:潘莹月、廖希杰 1. 场景调研 我们小组选择项目的任务方向乒乓球的捡取与存放,针对此问题我们研发了一款乒乓球自动拾取机器人。众所周知&#xff0…

【Unity】【VRTK】【Pico】如何快速在VRTK中引入带动画的PICO控制器

【背景】 之前的VRTK篇章中,我只介绍了Oculus,Open VR,SImulator这三种Rig的配置方法,那么Pico如何融合VRTK进行开发呢? 【需要的开发包】 先像一个正常PICO项目那样导入PICO的SDK到Unity。VRTK 4的Package导入器中搜Pico,可以导入一个Pico的Integration,导入后Projec…

SpringCloud.03.网关Gateway

目录 网关Gateway的概念: 准备 使用 方式一 因为配置了网关所以可以直接通过gateway发送请求 方式二 修改配置前:http://localhost:8082/provider/run 方式三(动态路由) 导入配置类 网关Gateway的概念: Spring Cloud Gateway 是 Spri…

【网络工程师】NAT与动态路由

一、NAT网络地址转换 1、NAT:Network Address Translations 网络地址转换 2、ip地址问题:ipv4地址严重不够用了(A、B、C类可以使用 D组播 E科研) 3、解决:把IP地址分为了公网IP和私网IP 公网IP只能在公网上使用 私网…

使用Docker容器部署LNMP服务

目录 实验前准备部署Nginx环境准备准备nginx.conf配置文件生成并启动镜像验证nginx 部署Mysql准备工作目录编写Dockerfile脚本准备my.cnf文件生成并启动镜像启动镜像容器验证mysql 部署php建立工作目录编写Dockerfile脚本准备配置文件生成并启动镜像验证php 启动wordpressmysql…

书生·浦语大模型实战营-学习笔记3

目录 (3)基于 InternLM 和 LangChain 搭建你的知识库1. 大模型开发范式(RAG、Fine-tune)RAG微调 (传统自然语言处理的方法) 2. LangChain简介(RAG开发框架)3. 构建向量数据库4. 搭建知识库助手5. Web Demo部…

非线性方程求根迭代法(C++)

文章目录 问题描述算法描述不动点迭代法一维情形多维情形 牛顿迭代法单根情形重根情形 割线法抛物线法逆二次插值法 算法实现准备工作一般迭代法割线法抛物线法逆二次插值法 实例分析例1例2 迭代法是一种求解非线性方程根的方法, 它通过构造一个迭代过程, 将一个非线性方程转化…

瑞_Java开发手册_(一)编程规约

文章目录 编程规约的意义(一)命名风格(二)常量定义(三)代码格式(四)OOP 规约(五)日期时间(六)集合处理(七)并发…

实现STM32烧写程序-(3) Hex文件结构

简介 要对STM32进行更新动作, 就需要对程序文件进行解析, 大部分编译的生成程序文件是Hex或者Bin, 先来看看Hex的结构吧。 资料 Hex文件 简介 Hex文件格式最早由Intel公司于1973年创建。它最初是为了在Intel 8080微处理器上存储和传输二进制数据而设计的。随后,Hex…

c++ 开发生态环境、工作流程、生命周期-拾遗

拾遗 1 生态环境初识 当您使用Visual Studio 2019进行C开发时,您将进入C生态环境。以下是一些重要的概念和步骤: C程序的结构: 一个典型的C程序包括源文件(.cpp)、头文件(.h)、编译后的目标文…

【算法实验】实验1

实验1-1 斐波那契数 【问题描述】斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。 定义:F(0) 0, F(1) 1, F(n) F(n-1) F(n-2) 其中n>1 要求计…

web前端算法简介之字典与哈希表

回顾 栈、队列 : 进、出 栈(Stack): 栈的操作主要包括: 队列(Queue): 队列的操作主要包括: 链表、数组 : 多个元素存储组成的 简述链表:数组&…

机器学习---xgboost算法

1. xgboost算法原理 XGBoost(Extreme Gradient Boosting)全名叫极端梯度提升树,XGBoost是集成学习方法的王 牌,在Kaggle数据挖掘比赛中,大部分获胜者用了XGBoost。 XGBoost在绝大多数的回归和分类 问题上表现的十分…