第 11 章 树结构实际应用

文章目录

  • 11.1 堆排序
    • 11.1.1 堆排序基本介绍
    • 11.1.2 堆排序基本思想
    • 11.1.3 堆排序步骤图解说明
    • 11.1.4 堆排序代码实现
  • 11.2 赫夫曼树
    • 11.2.1 基本介绍
    • 11.2.2 赫夫曼树几个重要概念和举例说明
    • 11.2.3 赫夫曼树创建思路图解
    • 11.2.4 赫夫曼树的代码实现
  • 11.3 赫夫曼编码
    • 11.3.1 基本介绍
    • 11.3.2 原理剖析
    • 11.3.3 最佳实践-数据压缩(创建赫夫曼树)
    • 11.3.4 最佳实践-数据压缩(生成赫夫曼编码和赫夫曼编码后的数据)
    • 11.3.5 最佳实践-数据解压(使用赫夫曼编码解码)
    • 11.3.6 最佳实践-文件压缩
    • 11.3.7 最佳实践-文件解压(文件恢复)
    • 11.3.8 代码汇总,把前面所有的方法放在一起
    • 11.3.9 赫夫曼编码压缩文件注意事项
  • 11.4 二叉排序树
    • 11.4.1 先看一个需求
    • 11.4.2 解决方案分析
    • 11.4.3 二叉排序树介绍
    • 11.4.4 二叉排序树创建和遍历
    • 11.4.5 二叉排序树的删除
    • 11.4.6 二叉排序树删除结点的代码实现:
    • 11.4.7 课后练习:完成老师代码,并使用第二种方式来解决
  • 11.5 平衡二叉树(AVL 树)
    • 11.5.1 看一个案例(说明二叉排序树可能的问题)
    • 11.5.2 基本介绍
    • 11.5.3 应用案例-单旋转(左旋转)
    • 11.5.4 应用案例-单旋转(右旋转)
    • 11.5.5 应用案例-双旋转

11.1 堆排序

11.1.1 堆排序基本介绍

  1. 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为 O(nlogn),它也是不稳定排序。

  2. 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。

  3. 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

  4. 大顶堆举例说明
    在这里插入图片描述

  5. 小顶堆举例说明
    在这里插入图片描述

  6. 一般升序采用大顶堆,降序采用小顶堆

11.1.2 堆排序基本思想

堆排序的基本思想是:

  1. 将待排序序列构造成一个大顶堆
  2. 此时,整个序列的最大值就是堆顶的根节点。
  3. 将其与末尾元素进行交换,此时末尾就为最大值。
  4. 然后将剩余 n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。如此反复执行,便能得到一个有序序列了。

可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

11.1.3 堆排序步骤图解说明

要求:给你一个数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。

步骤一
构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。原始的数组 [4, 6, 8, 5, 9]
1 .假设给定无序序列结构如下
在这里插入图片描述2 .此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点
arr.length/2-1=5/2-1=1,也就是下面的 6 结点),从左至右,从下至上进行调整。
在这里插入图片描述
3.找到第二个非叶节点 4,由于[4,9,8]中 9 元素最大,4 和 9 交换。
在这里插入图片描述
4.这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中 6 最大,交换 4 和 6。

在这里插入图片描述此时,我们就将一个无序序列构造成了一个大顶堆。

步骤二
将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,

得到第二大元素。如此反复进行交换、重建、交换。

1 .将堆顶元素 9 和末尾元素 4 进行交换
在这里插入图片描述
2 .重新调整结构,使其继续满足堆定义
在这里插入图片描述3 .再将堆顶元素 8 与末尾元素 5 进行交换,得到第二大元素 8.
在这里插入图片描述
4.后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
在这里插入图片描述再简单总结下堆排序的基本思路:
1). 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;

2). 将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;

3). 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

11.1.4 堆排序代码实现

要求:给你一个数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。代码实现:看老师演示:
说明:

  1. 堆排序不是很好理解,老师通过 Debug 帮助大家理解堆排序

  2. 堆排序的速度非常快,在我的机器上 8 百万数据 3 秒左右。O(nlogn)

  3. 代码实现

     package com.atguigu.tree;import java.text.SimpleDateFormat;
    import java.util.Arrays;
    import java.util.Date;public class HeapSort {public static void main(String[] args) {//要求将数组进行升序排序//int arr[] = {4, 6, 8, 5, 9};// 创建要给80000个的随机的数组int[] arr = new int[8000000];for (int i = 0; i < 8000000; i++) {arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数}System.out.println("排序前");Date data1 = new Date();SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");String date1Str = simpleDateFormat.format(data1);System.out.println("排序前的时间是=" + date1Str);heapSort(arr);Date data2 = new Date();String date2Str = simpleDateFormat.format(data2);System.out.println("排序前的时间是=" + date2Str);//System.out.println("排序后=" + Arrays.toString(arr));}//编写一个堆排序的方法public static void heapSort(int arr[]) {int temp = 0;System.out.println("堆排序!!");//		//分步完成
    //		adjustHeap(arr, 1, arr.length);
    //		System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
    //		
    //		adjustHeap(arr, 0, arr.length);
    //		System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4//完成我们最终代码//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆for(int i = arr.length / 2 -1; i >=0; i--) {adjustHeap(arr, i, arr.length);}/** 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。*/for(int j = arr.length-1;j >0; j--) {//交换temp = arr[j];arr[j] = arr[0];arr[0] = temp;adjustHeap(arr, 0, j); }//System.out.println("数组=" + Arrays.toString(arr)); }//将一个数组(二叉树), 调整成一个大顶堆/*** 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆* 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}* 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}* @param arr 待调整的数组* @param i 表示非叶子结点在数组中索引* @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少*/public  static void adjustHeap(int arr[], int i, int lenght) {int temp = arr[i];//先取出当前元素的值,保存在临时变量//开始调整//说明//1. k = i * 2 + 1 k 是 i结点的左子结点for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值k++; // k 指向右子结点}if(arr[k] > temp) { //如果子结点大于父结点arr[i] = arr[k]; //把较大的值赋给当前结点i = k; //!!! i 指向 k,继续循环比较} else {break;//!}}//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)arr[i] = temp;//将temp值放到调整后的位置}}
    

11.2 赫夫曼树

11.2.1 基本介绍

  1. 给定 n 个权值作为 n 个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。
  2. 赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近

11.2.2 赫夫曼树几个重要概念和举例说明

  1. 路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路

中分支的数目称为路径长度。若规定根结点的层数为 1,则从根结点到第 L 层结点的路径长度为 L-1
2) 结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积
3) 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为 WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
4) WPL 最小的就是赫夫曼树
在这里插入图片描述

11.2.3 赫夫曼树创建思路图解

给你一个数列 {13, 7, 8, 3, 29, 6, 1},要求转成一颗赫夫曼树.

 思路分析(示意图):
{13, 7, 8, 3, 29, 6, 1}

构成赫夫曼树的步骤:

  1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树

  2. 取出根节点权值最小的两颗二叉树

  3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和

  4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树

  5. 图解:
    在这里插入图片描述

11.2.4 赫夫曼树的代码实现

代码实现:

package com.atguigu.huffmantree;import java.util.ArrayList;
import java.util.Collections;
import java.util.List;public class HuffmanTree {public static void main(String[] args) {int arr[] = { 13, 7, 8, 3, 29, 6, 1 };Node root = createHuffmanTree(arr);//测试一把preOrder(root); //}//编写一个前序遍历的方法public static void preOrder(Node root) {if(root != null) {root.preOrder();}else{System.out.println("是空树,不能遍历~~");}}// 创建赫夫曼树的方法/*** * @param arr 需要创建成哈夫曼树的数组* @return 创建好后的赫夫曼树的root结点*/public static Node createHuffmanTree(int[] arr) {// 第一步为了操作方便// 1. 遍历 arr 数组// 2. 将arr的每个元素构成成一个Node// 3. 将Node 放入到ArrayList中List<Node> nodes = new ArrayList<Node>();for (int value : arr) {nodes.add(new Node(value));}//我们处理的过程是一个循环的过程while(nodes.size() > 1) {//排序 从小到大 Collections.sort(nodes);System.out.println("nodes =" + nodes);//取出根节点权值最小的两颗二叉树 //(1) 取出权值最小的结点(二叉树)Node leftNode = nodes.get(0);//(2) 取出权值第二小的结点(二叉树)Node rightNode = nodes.get(1);//(3)构建一颗新的二叉树Node parent = new Node(leftNode.value + rightNode.value);parent.left = leftNode;parent.right = rightNode;//(4)从ArrayList删除处理过的二叉树nodes.remove(leftNode);nodes.remove(rightNode);//(5)将parent加入到nodesnodes.add(parent);}//返回哈夫曼树的root结点return nodes.get(0);}
}// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {int value; // 结点权值char c; //字符Node left; // 指向左子结点Node right; // 指向右子结点//写一个前序遍历public void preOrder() {System.out.println(this);if(this.left != null) {this.left.preOrder();}if(this.right != null) {this.right.preOrder();}}public Node(int value) {this.value = value;}@Overridepublic String toString() {return "Node [value=" + value + "]";}@Overridepublic int compareTo(Node o) {// TODO Auto-generated method stub// 表示从小到大排序return this.value - o.value;}}

11.3 赫夫曼编码

11.3.1 基本介绍

  1. 赫夫曼编码也翻译为 哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式, 属于一种程序算法

  2. 赫夫曼编码是赫哈夫曼树在电讯通信中的经典的应用之一。

  3. 赫夫曼编码广泛地用于数据文件压缩。其压缩率通常在 20%~90%之间

  4. 赫夫曼码是可变字长编码(VLC)的一种。Huffman 于 1952 年提出一种编码方法,称之为最佳编码

11.3.2 原理剖析

 通信领域中信息的处理方式 1-定长编码
在这里插入图片描述

 通信领域中信息的处理方式 2-变长编码
在这里插入图片描述

 通信领域中信息的处理方式 3-赫夫曼编码
步骤如下;
输的 字符串

  1. i like like like java do you like a java

  2. d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数

  3. 按照上面字符出现的次数构建一颗赫夫曼树, 次数作为权值
    步骤:
    构成赫夫曼树的步骤:

    1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
    2. 取出根节点权值最小的两颗二叉树
    3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
    4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
      在这里插入图片描述

4.根据赫夫曼树,给各个字符,规定编码 (前缀编码), 向左的路径为 0 向右的路径为 1 , 编码如下:
o: 1000 u: 10010 d: 100110 y: 100111 i: 101

a : 110 k: 1110 e: 1111 j: 0000 v: 0001
l: 001 01

5.按照上面的赫夫曼编码,我们的"i like like like java do you like a java" 字符串对应的编码为 (注意这里我们使用的无损压缩) 10101001101111011110100110111101111010011011110111101000011000011100110011110000110
01111000100100100110111101111011100100001100001110 通过赫夫曼编码处理 长度为 133

6 . 长度为 : 133
说明:
原来长度是 359 , 压缩了 (359-133) / 359 = 62.9%

 注意事项
注意, 这个赫夫曼树根据排序方法不同,也可能不太一样,这样对应的赫夫曼编码也不完全一样,但是 wpl 是一样的,都是最小的, 最后生成的赫夫曼编码的长度是一样,比如: 如果我们让每次生成的新的二叉树总是排在权值相同的二叉树的最后一个,则生成的二叉树为:
在这里插入图片描述

11.3.3 最佳实践-数据压缩(创建赫夫曼树)

将给出的一段文本,比如 “i like like like java do you like a java” , 根据前面的讲的赫夫曼编码原理,对其进行数据 压 缩 处 理 , 形 式 如 "1010100110111101111010011011110111101001101111011110100001100001110011001111000011001111000100100100
110111101111011100100001100001110 "

步骤 1:根据赫夫曼编码压缩数据的原理,需要创建 “i like like like java do you like a java” 对应的赫夫曼树.

思路:前面已经分析过了,而且我们已然讲过了构建赫夫曼树的具体实现。代码实现:

//可以通过List 创建对应的赫夫曼树private static Node createHuffmanTree(List<Node> nodes) {while(nodes.size() > 1) {//排序, 从小到大Collections.sort(nodes);//取出第一颗最小的二叉树Node leftNode = nodes.get(0);//取出第二颗最小的二叉树Node rightNode = nodes.get(1);//创建一颗新的二叉树,它的根节点 没有data, 只有权值Node parent = new Node(null, leftNode.weight + rightNode.weight);parent.left = leftNode;parent.right = rightNode;//将已经处理的两颗二叉树从nodes删除nodes.remove(leftNode);nodes.remove(rightNode);//将新的二叉树,加入到nodesnodes.add(parent);}//nodes 最后的结点,就是赫夫曼树的根结点return nodes.get(0);}

11.3.4 最佳实践-数据压缩(生成赫夫曼编码和赫夫曼编码后的数据)

我们已经生成了 赫夫曼树, 下面我们继续完成任务

  1. 生成赫夫曼树对应的赫夫曼编码 , 如下表:
    =01 a=100 d=11000 u=11001 e=1110 v=11011 i=101 y=11010 j=0010 k=1111 l=000 o=0011

  2. 使用赫夫曼编码来生成赫夫曼编码数据 ,即按照上面的赫夫曼编码,将"i like like like java do you like a java"字符串生成对应的编码数据, 形式如下. 10101000101111111100100010111111110010001011111111001001010011011100011100000110111010001111001010
    00101111111100110001001010011011100

  3. 思路:前面已经分析过了,而且我们讲过了生成赫夫曼编码的具体实现。

  4. 代码实现:

     /*** 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合* @param node  传入结点* @param code  路径: 左子结点是 0, 右子结点 1* @param stringBuilder 用于拼接路径*/private static void getCodes(Node node, String code, StringBuilder stringBuilder) {StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);//将code 加入到 stringBuilder2stringBuilder2.append(code);if(node != null) { //如果node == null不处理//判断当前node 是叶子结点还是非叶子结点if(node.data == null) { //非叶子结点//递归处理//向左递归getCodes(node.left, "0", stringBuilder2);//向右递归getCodes(node.right, "1", stringBuilder2);} else { //说明是一个叶子结点//就表示找到某个叶子结点的最后huffmanCodes.put(node.data, stringBuilder2.toString());}}}
    

11.3.5 最佳实践-数据解压(使用赫夫曼编码解码)

使用赫夫曼编码来解码数据,具体要求是

  1. 前面我们得到了赫夫曼编码和对应的编码
    byte[] , 即:[-88, -65, -56, -65, -56, -65, -55, 77
    , -57, 6, -24, -14, -117, -4, -60, -90, 28]

  2. 现在要求使用赫夫曼编码, 进行解码,又
    重新得到原来的字符串"i like like like java do you like a java"

  3. 思路:解码过程,就是编码的一个逆向操作。

  4. 代码实现:

     /*** 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码* @param b 传入的 byte* @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位* @return 是该b 对应的二进制的字符串,(注意是按补码返回)*/private static String byteToBitString(boolean flag, byte b) {//使用变量保存 bint temp = b; //将 b 转成 int//如果是正数我们还存在补高位if(flag) {temp |= 256; //按位与 256  1 0000 0000  | 0000 0001 => 1 0000 0001}String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码if(flag) {return str.substring(str.length() - 8);} else {return str;}}//编写一个方法,完成对压缩数据的解码/*** * @param huffmanCodes 赫夫曼编码表 map* @param huffmanBytes 赫夫曼编码得到的字节数组* @return 就是原来的字符串对应的数组*/private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) {//1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111...StringBuilder stringBuilder = new StringBuilder();//将byte数组转成二进制的字符串for(int i = 0; i < huffmanBytes.length; i++) {byte b = huffmanBytes[i];//判断是不是最后一个字节boolean flag = (i == huffmanBytes.length - 1);stringBuilder.append(byteToBitString(!flag, b));}//把字符串安装指定的赫夫曼编码进行解码//把赫夫曼编码表进行调换,因为反向查询 a->100 100->aMap<String, Byte>  map = new HashMap<String,Byte>();for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) {map.put(entry.getValue(), entry.getKey());}//创建要给集合,存放byteList<Byte> list = new ArrayList<>();//i 可以理解成就是索引,扫描 stringBuilder for(int  i = 0; i < stringBuilder.length(); ) {int count = 1; // 小的计数器boolean flag = true;Byte b = null;while(flag) {//1010100010111...//递增的取出 key 1 String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符b = map.get(key);if(b == null) {//说明没有匹配到count++;}else {//匹配到flag = false;}}list.add(b);i += count;//i 直接移动到 count	}//当for循环结束后,我们list中就存放了所有的字符  "i like like like java do you like a java"//把list 中的数据放入到byte[] 并返回byte b[] = new byte[list.size()];for(int i = 0;i < b.length; i++) {b[i] = list.get(i);}return b;}
    

11.3.6 最佳实践-文件压缩

我们学习了通过赫夫曼编码对一个字符串进行编码和解码, 下面我们来完成对文件的压缩和解压, 具体要求:给你一个图片文件,要求对其进行无损压缩, 看看压缩效果如何。

  1. 思路:读取文件-> 得到赫夫曼编码表 -> 完成压缩

  2. 代码实现:

     //编写一个方法,完成对压缩文件的解压/*** * @param zipFile 准备解压的文件* @param dstFile 将文件解压到哪个路径*/public static void unZipFile(String zipFile, String dstFile) {//定义文件输入流InputStream is = null;//定义一个对象输入流ObjectInputStream ois = null;//定义文件的输出流OutputStream os = null;try {//创建文件输入流is = new FileInputStream(zipFile);//创建一个和  is关联的对象输入流ois = new ObjectInputStream(is);//读取byte数组  huffmanBytesbyte[] huffmanBytes = (byte[])ois.readObject();//读取赫夫曼编码表Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject();//解码byte[] bytes = decode(huffmanCodes, huffmanBytes);//将bytes 数组写入到目标文件os = new FileOutputStream(dstFile);//写数据到 dstFile 文件os.write(bytes);} catch (Exception e) {// TODO: handle exceptionSystem.out.println(e.getMessage());} finally {try {os.close();ois.close();is.close();} catch (Exception e2) {// TODO: handle exceptionSystem.out.println(e2.getMessage());}}}
    

11.3.7 最佳实践-文件解压(文件恢复)

具体要求:将前面压缩的文件,重新恢复成原来的文件。

  1. 思路:读取压缩文件(数据和赫夫曼编码表)-> 完成解压(文件恢复)

  2. 代码实现:

     //编写一个方法,完成对压缩文件的解压/*** * @param zipFile 准备解压的文件* @param dstFile 将文件解压到哪个路径*/public static void unZipFile(String zipFile, String dstFile) {//定义文件输入流InputStream is = null;//定义一个对象输入流ObjectInputStream ois = null;//定义文件的输出流OutputStream os = null;try {//创建文件输入流is = new FileInputStream(zipFile);//创建一个和  is关联的对象输入流ois = new ObjectInputStream(is);//读取byte数组  huffmanBytesbyte[] huffmanBytes = (byte[])ois.readObject();//读取赫夫曼编码表Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject();//解码byte[] bytes = decode(huffmanCodes, huffmanBytes);//将bytes 数组写入到目标文件os = new FileOutputStream(dstFile);//写数据到 dstFile 文件os.write(bytes);} catch (Exception e) {// TODO: handle exceptionSystem.out.println(e.getMessage());} finally {try {os.close();ois.close();is.close();} catch (Exception e2) {// TODO: handle exceptionSystem.out.println(e2.getMessage());}}}
    

11.3.8 代码汇总,把前面所有的方法放在一起

	package com.atguigu.huffmancode;import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.InputStream;import java.io.ObjectInputStream;import java.io.ObjectOutputStream;import java.io.OutputStream;import java.util.ArrayList;import java.util.Arrays;import java.util.Collections;import java.util.HashMap;import java.util.List;import java.util.Map;public class HuffmanCode {public static void main(String[] args) {//测试压缩文件//		String srcFile = "d://Uninstall.xml";//		String dstFile = "d://Uninstall.zip";//		//		zipFile(srcFile, dstFile);//		System.out.println("压缩文件ok~~");//测试解压文件String zipFile = "d://Uninstall.zip";String dstFile = "d://Uninstall2.xml";unZipFile(zipFile, dstFile);System.out.println("解压成功!");/*String content = "i like like like java do you like a java";byte[] contentBytes = content.getBytes();System.out.println(contentBytes.length); //40byte[] huffmanCodesBytes= huffmanZip(contentBytes);System.out.println("压缩后的结果是:" + Arrays.toString(huffmanCodesBytes) + " 长度= " + huffmanCodesBytes.length);//测试一把byteToBitString方法//System.out.println(byteToBitString((byte)1));byte[] sourceBytes = decode(huffmanCodes, huffmanCodesBytes);System.out.println("原来的字符串=" + new String(sourceBytes)); // "i like like like java do you like a java"*///如何将 数据进行解压(解码)  //分步过程/*List<Node> nodes = getNodes(contentBytes);System.out.println("nodes=" + nodes);//测试一把,创建的赫夫曼树System.out.println("赫夫曼树");Node huffmanTreeRoot = createHuffmanTree(nodes);System.out.println("前序遍历");huffmanTreeRoot.preOrder();//测试一把是否生成了对应的赫夫曼编码Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);System.out.println("~生成的赫夫曼编码表= " + huffmanCodes);//测试byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes);System.out.println("huffmanCodeBytes=" + Arrays.toString(huffmanCodeBytes));//17//发送huffmanCodeBytes 数组 */}//编写一个方法,完成对压缩文件的解压/*** * @param zipFile 准备解压的文件* @param dstFile 将文件解压到哪个路径*/public static void unZipFile(String zipFile, String dstFile) {//定义文件输入流InputStream is = null;//定义一个对象输入流ObjectInputStream ois = null;//定义文件的输出流OutputStream os = null;try {//创建文件输入流is = new FileInputStream(zipFile);//创建一个和  is关联的对象输入流ois = new ObjectInputStream(is);//读取byte数组  huffmanBytesbyte[] huffmanBytes = (byte[])ois.readObject();//读取赫夫曼编码表Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject();//解码byte[] bytes = decode(huffmanCodes, huffmanBytes);//将bytes 数组写入到目标文件os = new FileOutputStream(dstFile);//写数据到 dstFile 文件os.write(bytes);} catch (Exception e) {// TODO: handle exceptionSystem.out.println(e.getMessage());} finally {try {os.close();ois.close();is.close();} catch (Exception e2) {// TODO: handle exceptionSystem.out.println(e2.getMessage());}}}//编写方法,将一个文件进行压缩/*** * @param srcFile 你传入的希望压缩的文件的全路径* @param dstFile 我们压缩后将压缩文件放到哪个目录*/public static void zipFile(String srcFile, String dstFile) {//创建输出流OutputStream os = null;ObjectOutputStream oos = null;//创建文件的输入流FileInputStream is = null;try {//创建文件的输入流is = new FileInputStream(srcFile);//创建一个和源文件大小一样的byte[]byte[] b = new byte[is.available()];//读取文件is.read(b);//直接对源文件压缩byte[] huffmanBytes = huffmanZip(b);//创建文件的输出流, 存放压缩文件os = new FileOutputStream(dstFile);//创建一个和文件输出流关联的ObjectOutputStreamoos = new ObjectOutputStream(os);//把 赫夫曼编码后的字节数组写入压缩文件oos.writeObject(huffmanBytes); //我们是把//这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用//注意一定要把赫夫曼编码 写入压缩文件oos.writeObject(huffmanCodes);}catch (Exception e) {// TODO: handle exceptionSystem.out.println(e.getMessage());}finally {try {is.close();oos.close();os.close();}catch (Exception e) {// TODO: handle exceptionSystem.out.println(e.getMessage());}}}//完成数据的解压//思路//1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]//   重写先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..."//2.  赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码  =》 "i like like like java do you like a java"//编写一个方法,完成对压缩数据的解码/*** * @param huffmanCodes 赫夫曼编码表 map* @param huffmanBytes 赫夫曼编码得到的字节数组* @return 就是原来的字符串对应的数组*/private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) {//1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111...StringBuilder stringBuilder = new StringBuilder();//将byte数组转成二进制的字符串for(int i = 0; i < huffmanBytes.length; i++) {byte b = huffmanBytes[i];//判断是不是最后一个字节boolean flag = (i == huffmanBytes.length - 1);stringBuilder.append(byteToBitString(!flag, b));}//把字符串安装指定的赫夫曼编码进行解码//把赫夫曼编码表进行调换,因为反向查询 a->100 100->aMap<String, Byte>  map = new HashMap<String,Byte>();for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) {map.put(entry.getValue(), entry.getKey());}//创建要给集合,存放byteList<Byte> list = new ArrayList<>();//i 可以理解成就是索引,扫描 stringBuilder for(int  i = 0; i < stringBuilder.length(); ) {int count = 1; // 小的计数器boolean flag = true;Byte b = null;while(flag) {//1010100010111...//递增的取出 key 1 String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符b = map.get(key);if(b == null) {//说明没有匹配到count++;}else {//匹配到flag = false;}}list.add(b);i += count;//i 直接移动到 count	}//当for循环结束后,我们list中就存放了所有的字符  "i like like like java do you like a java"//把list 中的数据放入到byte[] 并返回byte b[] = new byte[list.size()];for(int i = 0;i < b.length; i++) {b[i] = list.get(i);}return b;}/*** 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码* @param b 传入的 byte* @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位* @return 是该b 对应的二进制的字符串,(注意是按补码返回)*/private static String byteToBitString(boolean flag, byte b) {//使用变量保存 bint temp = b; //将 b 转成 int//如果是正数我们还存在补高位if(flag) {temp |= 256; //按位与 256  1 0000 0000  | 0000 0001 => 1 0000 0001}String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码if(flag) {return str.substring(str.length() - 8);} else {return str;}}//使用一个方法,将前面的方法封装起来,便于我们的调用./*** * @param bytes 原始的字符串对应的字节数组* @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组)*/private static byte[] huffmanZip(byte[] bytes) {List<Node> nodes = getNodes(bytes);//根据 nodes 创建的赫夫曼树Node huffmanTreeRoot = createHuffmanTree(nodes);//对应的赫夫曼编码(根据 赫夫曼树)Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);//根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);return huffmanCodeBytes;}//编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]/*** * @param bytes 这时原始的字符串对应的 byte[]* @param huffmanCodes 生成的赫夫曼编码map* @return 返回赫夫曼编码处理后的 byte[] * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes();* 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"* => 对应的 byte[] huffmanCodeBytes  ,即 8位对应一个 byte,放入到 huffmanCodeBytes* huffmanCodeBytes[0] =  10101000(补码) => byte  [推导  10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]* huffmanCodeBytes[1] = -88*/private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {//1.利用 huffmanCodes 将  bytes 转成  赫夫曼编码对应的字符串StringBuilder stringBuilder = new StringBuilder();//遍历bytes 数组 for(byte b: bytes) {stringBuilder.append(huffmanCodes.get(b));}//System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString());//将 "1010100010111111110..." 转成 byte[]//统计返回  byte[] huffmanCodeBytes 长度//一句话 int len = (stringBuilder.length() + 7) / 8;int len;if(stringBuilder.length() % 8 == 0) {len = stringBuilder.length() / 8;} else {len = stringBuilder.length() / 8 + 1;}//创建 存储压缩后的 byte数组byte[] huffmanCodeBytes = new byte[len];int index = 0;//记录是第几个bytefor (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8String strByte;if(i+8 > stringBuilder.length()) {//不够8位strByte = stringBuilder.substring(i);}else{strByte = stringBuilder.substring(i, i + 8);}	//将strByte 转成一个byte,放入到 huffmanCodeByteshuffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2);index++;}return huffmanCodeBytes;}//生成赫夫曼树对应的赫夫曼编码//思路://1. 将赫夫曼编码表存放在 Map<Byte,String> 形式//   生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>();//2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径static StringBuilder stringBuilder = new StringBuilder();//为了调用方便,我们重载 getCodesprivate static Map<Byte, String> getCodes(Node root) {if(root == null) {return null;}//处理root的左子树getCodes(root.left, "0", stringBuilder);//处理root的右子树getCodes(root.right, "1", stringBuilder);return huffmanCodes;}/*** 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合* @param node  传入结点* @param code  路径: 左子结点是 0, 右子结点 1* @param stringBuilder 用于拼接路径*/private static void getCodes(Node node, String code, StringBuilder stringBuilder) {StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);//将code 加入到 stringBuilder2stringBuilder2.append(code);if(node != null) { //如果node == null不处理//判断当前node 是叶子结点还是非叶子结点if(node.data == null) { //非叶子结点//递归处理//向左递归getCodes(node.left, "0", stringBuilder2);//向右递归getCodes(node.right, "1", stringBuilder2);} else { //说明是一个叶子结点//就表示找到某个叶子结点的最后huffmanCodes.put(node.data, stringBuilder2.toString());}}}//前序遍历的方法private static void preOrder(Node root) {if(root != null) {root.preOrder();}else {System.out.println("赫夫曼树为空");}}/*** * @param bytes 接收字节数组* @return 返回的就是 List 形式   [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],*/private static List<Node> getNodes(byte[] bytes) {//1创建一个ArrayListArrayList<Node> nodes = new ArrayList<Node>();//遍历 bytes , 统计 每一个byte出现的次数->map[key,value]Map<Byte, Integer> counts = new HashMap<>();for (byte b : bytes) {Integer count = counts.get(b);if (count == null) { // Map还没有这个字符数据,第一次counts.put(b, 1);} else {counts.put(b, count + 1);}}//把每一个键值对转成一个Node 对象,并加入到nodes集合//遍历mapfor(Map.Entry<Byte, Integer> entry: counts.entrySet()) {nodes.add(new Node(entry.getKey(), entry.getValue()));}return nodes;}//可以通过List 创建对应的赫夫曼树private static Node createHuffmanTree(List<Node> nodes) {while(nodes.size() > 1) {//排序, 从小到大Collections.sort(nodes);//取出第一颗最小的二叉树Node leftNode = nodes.get(0);//取出第二颗最小的二叉树Node rightNode = nodes.get(1);//创建一颗新的二叉树,它的根节点 没有data, 只有权值Node parent = new Node(null, leftNode.weight + rightNode.weight);parent.left = leftNode;parent.right = rightNode;//将已经处理的两颗二叉树从nodes删除nodes.remove(leftNode);nodes.remove(rightNode);//将新的二叉树,加入到nodesnodes.add(parent);}//nodes 最后的结点,就是赫夫曼树的根结点return nodes.get(0);}}//创建Node ,待数据和权值class Node implements Comparable<Node>  {Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32int weight; //权值, 表示字符出现的次数Node left;//Node right;public Node(Byte data, int weight) {this.data = data;this.weight = weight;}@Overridepublic int compareTo(Node o) {// 从小到大排序return this.weight - o.weight;}public String toString() {return "Node [data = " + data + " weight=" + weight + "]";}//前序遍历public void preOrder() {System.out.println(this);if(this.left != null) {this.left.preOrder();}if(this.right != null) {this.right.preOrder();}}}

11.3.9 赫夫曼编码压缩文件注意事项

  1. 如果文件本身就是经过压缩处理的,那么使用赫夫曼编码再压缩效率不会有明显变化, 比如视频,ppt 等等文件
    [举例压一个 .ppt]
  2. 赫夫曼编码是按字节来处理的,因此可以处理所有的文件(二进制文件、文本文件) [举例压一个.xml 文件]
  3. 如果一个文件中的内容,重复的数据不多,压缩效果也不会很明显.

11.4 二叉排序树

11.4.1 先看一个需求

给你一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加

11.4.2 解决方案分析

 使用数组
数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢. [示意图]
数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位置后,后面的数据需整体移动,速度慢。[示意图]

 使用链式存储-链表
不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。[示意图]

 使用二叉排序树

11.4.3 二叉排序树介绍

二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。
特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:

在这里插入图片描述

11.4.4 二叉排序树创建和遍历

一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创建成对应的二叉排序树为 :

在这里插入图片描述

11.4.5 二叉排序树的删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

  1. 删除叶子节点 (比如:2, 5, 9, 12)
  2. 删除只有一颗子树的节点 (比如:1)
  3. 删除有两颗子树的节点. (比如:7, 3,10 )
  4. 操作的思路分析

在这里插入图片描述
//对删除结点的各种情况的思路分析:

第一种情况:
删除叶子节点 (比如:2, 5, 9, 12)
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 确定 targetNode 是 parent 的左子结点 还是右子结点
(4) 根据前面的情况来对应删除左子结点 parent.left = null
右子结点 parent.right = null;
第二种情况:
删除只有一颗子树的节点 比如 1
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 确定 targetNode 的子结点是左子结点还是右子结点
(4) targetNode 是 parent 的左子结点还是右子结点
(5) 如果 targetNode 有左子结点
如果 targetNode 是 parent 的左子结点
parent.left = targetNode.left;
如果 targetNode 是 parent 的右子结点
parent.right = targetNode.left;
(6) 如果 targetNode 有右子结点
如果 targetNode 是 parent 的左子结点
parent.left = targetNode.right;
如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right

情况三 :
删除有两颗子树的节点. (比如:7, 3,10 )
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 从 targetNode 的右子树找到最小的结点
(4) 用一个临时变量,将 最小结点的值保存 temp = 11
(5) 删除该最小结点
(6) targetNode.value = temp

11.4.6 二叉排序树删除结点的代码实现:

package com.atguigu.binarysorttree;public class BinarySortTreeDemo {public static void main(String[] args) {int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};BinarySortTree binarySortTree = new BinarySortTree();//循环的添加结点到二叉排序树for(int i = 0; i< arr.length; i++) {binarySortTree.add(new Node(arr[i]));}//中序遍历二叉排序树System.out.println("中序遍历二叉排序树~");binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12//测试一下删除叶子结点binarySortTree.delNode(12);binarySortTree.delNode(5);binarySortTree.delNode(10);binarySortTree.delNode(2);binarySortTree.delNode(3);binarySortTree.delNode(9);binarySortTree.delNode(1);binarySortTree.delNode(7);System.out.println("root=" + binarySortTree.getRoot());System.out.println("删除结点后");binarySortTree.infixOrder();}}//创建二叉排序树
class BinarySortTree {private Node root;public Node getRoot() {return root;}//查找要删除的结点public Node search(int value) {if(root == null) {return null;} else {return root.search(value);}}//查找父结点public Node searchParent(int value) {if(root == null) {return null;} else {return root.searchParent(value);}}//编写方法: //1. 返回的 以node 为根结点的二叉排序树的最小结点的值//2. 删除node 为根结点的二叉排序树的最小结点/*** * @param node 传入的结点(当做二叉排序树的根结点)* @return 返回的 以node 为根结点的二叉排序树的最小结点的值*/public int delRightTreeMin(Node node) {Node target = node;//循环的查找左子节点,就会找到最小值while(target.left != null) {target = target.left;}//这时 target就指向了最小结点//删除最小结点delNode(target.value);return target.value;}//删除结点public void delNode(int value) {if(root == null) {return;}else {//1.需求先去找到要删除的结点  targetNodeNode targetNode = search(value);//如果没有找到要删除的结点if(targetNode == null) {return;}//如果我们发现当前这颗二叉排序树只有一个结点if(root.left == null && root.right == null) {root = null;return;}//去找到targetNode的父结点Node parent = searchParent(value);//如果要删除的结点是叶子结点if(targetNode.left == null && targetNode.right == null) {//判断targetNode 是父结点的左子结点,还是右子结点if(parent.left != null && parent.left.value == value) { //是左子结点parent.left = null;} else if (parent.right != null && parent.right.value == value) {//是由子结点parent.right = null;}} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点int minVal = delRightTreeMin(targetNode.right);targetNode.value = minVal;} else { // 删除只有一颗子树的结点//如果要删除的结点有左子结点 if(targetNode.left != null) {if(parent != null) {//如果 targetNode 是 parent 的左子结点if(parent.left.value == value) {parent.left = targetNode.left;} else { //  targetNode 是 parent 的右子结点parent.right = targetNode.left;} } else {root = targetNode.left;}} else { //如果要删除的结点有右子结点 if(parent != null) {//如果 targetNode 是 parent 的左子结点if(parent.left.value == value) {parent.left = targetNode.right;} else { //如果 targetNode 是 parent 的右子结点parent.right = targetNode.right;}} else {root = targetNode.right;}}}}}//添加结点的方法public void add(Node node) {if(root == null) {root = node;//如果root为空则直接让root指向node} else {root.add(node);}}//中序遍历public void infixOrder() {if(root != null) {root.infixOrder();} else {System.out.println("二叉排序树为空,不能遍历");}}
}//创建Node结点
class Node {int value;Node left;Node right;public Node(int value) {this.value = value;}//查找要删除的结点/*** * @param value 希望删除的结点的值* @return 如果找到返回该结点,否则返回null*/public Node search(int value) {if(value == this.value) { //找到就是该结点return this;} else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找//如果左子结点为空if(this.left  == null) {return null;}return this.left.search(value);} else { //如果查找的值不小于当前结点,向右子树递归查找if(this.right == null) {return null;}return this.right.search(value);}}//查找要删除结点的父结点/*** * @param value 要找到的结点的值* @return 返回的是要删除的结点的父结点,如果没有就返回null*/public Node searchParent(int value) {//如果当前结点就是要删除的结点的父结点,就返回if((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {return this;} else {//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空if(value < this.value && this.left != null) {return this.left.searchParent(value); //向左子树递归查找} else if (value >= this.value && this.right != null) {return this.right.searchParent(value); //向右子树递归查找} else {return null; // 没有找到父结点}}}@Overridepublic String toString() {return "Node [value=" + value + "]";}//添加结点的方法//递归的形式添加结点,注意需要满足二叉排序树的要求public void add(Node node) {if(node == null) {return;}//判断传入的结点的值,和当前子树的根结点的值关系if(node.value < this.value) {//如果当前结点左子结点为nullif(this.left == null) {this.left = node;} else {//递归的向左子树添加this.left.add(node);}} else { //添加的结点的值大于 当前结点的值if(this.right == null) {this.right = node;} else {//递归的向右子树添加this.right.add(node);}}}//中序遍历public void infixOrder() {if(this.left != null) {this.left.infixOrder();}System.out.println(this);if(this.right != null) {this.right.infixOrder();}}}

11.4.7 课后练习:完成老师代码,并使用第二种方式来解决

如果我们从左子树找到最大的结点,然后前面的思路完成.

11.5 平衡二叉树(AVL 树)

11.5.1 看一个案例(说明二叉排序树可能的问题)

给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.
 左边 BST 存在的问题分析:

  1. 左子树全部为空,从形式上看,更像一个单链表.
  2. 插入速度没有影响
  3. 查询速度明显降低(因为需要依次比较), 不能发挥 BST

的优势,因为每次还需要比较左子树,其查询速度比单链表还慢
4) 解决方案-平衡二叉树(AVL)

11.5.2 基本介绍

  1. 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为 AVL 树, 可以保证查询效率较高。
  2. 具有以下特点:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过 1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。
  3. 举例说明, 看看下面哪些 AVL 树, 为什么?
    在这里插入图片描述

11.5.3 应用案例-单旋转(左旋转)

  1. 要求: 给你一个数列,创建出对应的平衡二叉树.数列 {4,3,6,5,7,8}

  2. 思路分析(示意图)
    在这里插入图片描述

  3. 代码实现

     //左旋转方法private void leftRotate() {//创建新的结点,以当前根结点的值Node newNode = new Node(value);//把新的结点的左子树设置成当前结点的左子树newNode.left = left;//把新的结点的右子树设置成带你过去结点的右子树的左子树newNode.right = right.left;//把当前结点的值替换成右子结点的值value = right.value;//把当前结点的右子树设置成当前结点右子树的右子树right = right.right;//把当前结点的左子树(左子结点)设置成新的结点left = newNode;}
    

11.5.4 应用案例-单旋转(右旋转)

  1. 要求: 给你一个数列,创建出对应的平衡二叉树.数列 {10,12, 8, 9, 7, 6}

  2. 思路分析(示意图)
    在这里插入图片描述

  3. 代码实现

    //右旋转
    private void rightRotate() {Node newNode = new Node(value);newNode.right = right;newNode.left = left.right;value = left.value;left = left.left;right = newNode;
    }
    

11.5.5 应用案例-双旋转

前面的两个数列,进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转不能完成平衡二叉树的转换。比如数列
int[] arr = { 10, 11, 7, 6, 8, 9 }; 运行原来的代码可以看到,并没有转成 AVL 树. int[] arr = {2,1,6,5,7,3}; // 运行原来的代码可以看到,并没有转成 AVL 树

  1. 问题分析
    在这里插入图片描述

  2. 解决思路分析

  • 当符号右旋转的条件时

  • 如果它的左子树的右子树高度大于它的左子树的高度

  • 先对当前这个结点的左节点进行左旋转

  • 在对当前结点进行右旋转的操作即可

  1. 代码实现[AVL 树的汇总代码(完整代码)]

     package com.atguigu.avl;public class AVLTreeDemo {public static void main(String[] args) {//int[] arr = {4,3,6,5,7,8};//int[] arr = { 10, 12, 8, 9, 7, 6 };int[] arr = { 10, 11, 7, 6, 8, 9 };  //创建一个 AVLTree对象AVLTree avlTree = new AVLTree();//添加结点for(int i=0; i < arr.length; i++) {avlTree.add(new Node(arr[i]));}//遍历System.out.println("中序遍历");avlTree.infixOrder();System.out.println("在平衡处理~~");System.out.println("树的高度=" + avlTree.getRoot().height()); //3System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2System.out.println("当前的根结点=" + avlTree.getRoot());//8}}// 创建AVLTree
    class AVLTree {private Node root;public Node getRoot() {return root;}// 查找要删除的结点public Node search(int value) {if (root == null) {return null;} else {return root.search(value);}}// 查找父结点public Node searchParent(int value) {if (root == null) {return null;} else {return root.searchParent(value);}}// 编写方法:// 1. 返回的 以node 为根结点的二叉排序树的最小结点的值// 2. 删除node 为根结点的二叉排序树的最小结点/*** * @param node*            传入的结点(当做二叉排序树的根结点)* @return 返回的 以node 为根结点的二叉排序树的最小结点的值*/public int delRightTreeMin(Node node) {Node target = node;// 循环的查找左子节点,就会找到最小值while (target.left != null) {target = target.left;}// 这时 target就指向了最小结点// 删除最小结点delNode(target.value);return target.value;}// 删除结点public void delNode(int value) {if (root == null) {return;} else {// 1.需求先去找到要删除的结点 targetNodeNode targetNode = search(value);// 如果没有找到要删除的结点if (targetNode == null) {return;}// 如果我们发现当前这颗二叉排序树只有一个结点if (root.left == null && root.right == null) {root = null;return;}// 去找到targetNode的父结点Node parent = searchParent(value);// 如果要删除的结点是叶子结点if (targetNode.left == null && targetNode.right == null) {// 判断targetNode 是父结点的左子结点,还是右子结点if (parent.left != null && parent.left.value == value) { // 是左子结点parent.left = null;} else if (parent.right != null && parent.right.value == value) {// 是由子结点parent.right = null;}} else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点int minVal = delRightTreeMin(targetNode.right);targetNode.value = minVal;} else { // 删除只有一颗子树的结点// 如果要删除的结点有左子结点if (targetNode.left != null) {if (parent != null) {// 如果 targetNode 是 parent 的左子结点if (parent.left.value == value) {parent.left = targetNode.left;} else { // targetNode 是 parent 的右子结点parent.right = targetNode.left;}} else {root = targetNode.left;}} else { // 如果要删除的结点有右子结点if (parent != null) {// 如果 targetNode 是 parent 的左子结点if (parent.left.value == value) {parent.left = targetNode.right;} else { // 如果 targetNode 是 parent 的右子结点parent.right = targetNode.right;}} else {root = targetNode.right;}}}}}// 添加结点的方法public void add(Node node) {if (root == null) {root = node;// 如果root为空则直接让root指向node} else {root.add(node);}}// 中序遍历public void infixOrder() {if (root != null) {root.infixOrder();} else {System.out.println("二叉排序树为空,不能遍历");}}
    }// 创建Node结点
    class Node {int value;Node left;Node right;public Node(int value) {this.value = value;}// 返回左子树的高度public int leftHeight() {if (left == null) {return 0;}return left.height();}// 返回右子树的高度public int rightHeight() {if (right == null) {return 0;}return right.height();}// 返回 以该结点为根结点的树的高度public int height() {return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;}//左旋转方法private void leftRotate() {//创建新的结点,以当前根结点的值Node newNode = new Node(value);//把新的结点的左子树设置成当前结点的左子树newNode.left = left;//把新的结点的右子树设置成带你过去结点的右子树的左子树newNode.right = right.left;//把当前结点的值替换成右子结点的值value = right.value;//把当前结点的右子树设置成当前结点右子树的右子树right = right.right;//把当前结点的左子树(左子结点)设置成新的结点left = newNode;}//右旋转private void rightRotate() {Node newNode = new Node(value);newNode.right = right;newNode.left = left.right;value = left.value;left = left.left;right = newNode;}// 查找要删除的结点/*** * @param value*            希望删除的结点的值* @return 如果找到返回该结点,否则返回null*/public Node search(int value) {if (value == this.value) { // 找到就是该结点return this;} else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找// 如果左子结点为空if (this.left == null) {return null;}return this.left.search(value);} else { // 如果查找的值不小于当前结点,向右子树递归查找if (this.right == null) {return null;}return this.right.search(value);}}// 查找要删除结点的父结点/*** * @param value*            要找到的结点的值* @return 返回的是要删除的结点的父结点,如果没有就返回null*/public Node searchParent(int value) {// 如果当前结点就是要删除的结点的父结点,就返回if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {return this;} else {// 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空if (value < this.value && this.left != null) {return this.left.searchParent(value); // 向左子树递归查找} else if (value >= this.value && this.right != null) {return this.right.searchParent(value); // 向右子树递归查找} else {return null; // 没有找到父结点}}}@Overridepublic String toString() {return "Node [value=" + value + "]";}// 添加结点的方法// 递归的形式添加结点,注意需要满足二叉排序树的要求public void add(Node node) {if (node == null) {return;}// 判断传入的结点的值,和当前子树的根结点的值关系if (node.value < this.value) {// 如果当前结点左子结点为nullif (this.left == null) {this.left = node;} else {// 递归的向左子树添加this.left.add(node);}} else { // 添加的结点的值大于 当前结点的值if (this.right == null) {this.right = node;} else {// 递归的向右子树添加this.right.add(node);}}//当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转if(rightHeight() - leftHeight() > 1) {//如果它的右子树的左子树的高度大于它的右子树的右子树的高度if(right != null && right.leftHeight() > right.rightHeight()) {//先对右子结点进行右旋转right.rightRotate();//然后在对当前结点进行左旋转leftRotate(); //左旋转..} else {//直接进行左旋转即可leftRotate();}return ; //必须要!!!}//当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转if(leftHeight() - rightHeight() > 1) {//如果它的左子树的右子树高度大于它的左子树的高度if(left != null && left.rightHeight() > left.leftHeight()) {//先对当前结点的左结点(左子树)->左旋转left.leftRotate();//再对当前结点进行右旋转rightRotate();} else {//直接进行右旋转即可rightRotate();}}}// 中序遍历public void infixOrder() {if (this.left != null) {this.left.infixOrder();}System.out.println(this);if (this.right != null) {this.right.infixOrder();}}}
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/622805.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【NI国产替代】USB‑7846 Kintex-7 160T FPGA,500 kS/s多功能可重配置I/O设备

Kintex-7 160T FPGA&#xff0c;500 kS/s多功能可重配置I/O设备 USB‑7846具有用户可编程FPGA&#xff0c;可用于高性能板载处理和对I/O信号进行直接控制&#xff0c;以确保系统定时和同步的完全灵活性。 您可以使用LabVIEW FPGA模块自定义这些设备&#xff0c;开发需要精确定时…

【GitHub项目推荐--13 个 Python 学习资源】【转载】

近些年&#xff0c;人工智能应用铺天盖地。人脸识别、老照片复活、换脸等应用都得益于人工智能算法。 许多人工智能算法封装的框架基于 Python 语言&#xff0c;这也导致了 Python 的热度只增不减。 Python 简单易学&#xff0c;根据 2020 年 StackOverflow 开发者调查报告显…

智能路由器中的 dns.he.net可使用自定义域名的免费 DDNS 服务配置方法

今天介绍的这个是可以使用自定义域名同时支持使用二级域名的免费DDNS服务 dns.he.net的动态DDNS服务的配置方法, 这个服务相对还是比较稳定的, 其配置也和其他的DDNS服务有些不太一样, 首先他的主机名: 这里需要设置为登录后分配的区域域名: ipv6.he.net 然后就是 DDNS 用户…

让一个元素水平居中的方式有哪些

今天总结一下我所遇到过的 让一个元素水平居中的方式 <!--* Author: HuKang* Date: 2023-09-19 11:07:44* LastEditTime: 2023-12-22 22:52:38* LastEditors: HuKang* Description: * FilePath: \route-planning\tempDemo.html --> <!DOCTYPE html> <html>…

案例:新闻数据加载

文章目录 介绍相关概念相关权限约束与限制完整示例 代码结构解读构建主界面数据请求下拉刷新总结 介绍 本篇Codelab是基于ArkTS的声明式开发范式实现的样例&#xff0c;主要介绍了数据请求和touch事件的使用。包含以下功能&#xff1a; 数据请求。列表下拉刷新。列表上拉加载…

Express 应用生成器(脚手架)的安装与使用

1、简介 自动生成一个express搭建的项目结构 官网&#xff1a;Express 应用生成器 2&#xff0c;使用 2.1全局安装&#xff0c;使用管理员打开命令窗口 2.2、安装express # 全局安装express npm install -g express # 全局安装express脚手架 npm install -g express-gene…

Socket编程-IO模型

1、首先IO模型的内容。 感觉可以简单理解为&#xff1a;我们写代码时&#xff0c;在基础的 IO 操作上做了一些其他的策略&#xff0c;根据策略的不同&#xff0c;一般有阻塞IO和非阻塞IO 1、阻塞IO 就是在操作的时候&#xff0c;比如网络通信中&#xff0c;某一线程使用下面这…

最大公约数和最小公倍数

1. 最大公约数 给定两个整数&#xff0c;求这两个数的最大公约数 暴力求解&#xff1a; 从较小的那个数开始&#xff0c;依次递减&#xff0c;直到某个数能够同时被整除 //暴力求解 int main() {int a 0;int b 0;scanf("%d %d", &a, &b);int i 0;int min …

代码随想录 Leetcode142. 环形链表 II

题目&#xff1a; 代码(首刷看解析 2024年1月13日&#xff09;&#xff1a; class Solution { public:ListNode *detectCycle(ListNode *head) {if (head nullptr) return nullptr;ListNode* fast head;ListNode* slow head;while (true) {if(fast->next nullptr || fa…

git-生成证书、公钥、私钥、error setting certificate verify locations解决方法

解决方法 方法1-配置证书、公钥、私钥打开Git Bash设置名称和邮箱执行&#xff0c;~/.ssh执行&#xff0c;ssh-keygen -t rsa -C "这是你的邮箱"&#xff0c;如图&#xff1a;进入文件夹可以看到用记事本之类的软件打开id_rsa.pub文件&#xff0c;并且复制全部内容。…

社区团购配送超市与小程序的共赢之路

对于社区服务来说&#xff0c;搭建一个小程序可以提供更加便捷、高效的服务&#xff0c;提升用户体验。下面我们将详细介绍如何通过乔拓云第三方平台搭建一个社区团购小程序。 首先&#xff0c;你需要打开乔拓云第三方平台&#xff0c;这是一个专门为小程序开发提供的平台。在浏…

哪些代码是 Code Review 中的大忌?—— 以 Python 为例

Code Review 首要达成的结果是更好的可读性。 在此基础上才是进一步发现项目的 Bug、处理性能优化上的问题。 因为&#xff0c;编码是给人看的&#xff0c;不是给计算机&#xff08;Coding for human, NOT computer&#xff09;。 一. 滥用缩写命名 Overusing abbreviation …

【LV12 DAY17-18 中断处理】

GPX1_1是外部中断9 EINT9 查询可知其中断ID是57 所以需要进行人为修正lr的地址 sub lr&#xff0c;lr&#xff0c;#4 //iqr异常处理程序 irq_handler: //IRQ异常后LR保存的地址是被IRQ打断指令的下一条再下一条指令的地址&#xff0c;所以我们需要人为进行修正一下sub LR,L…

泛微OA-Ecology8表单中填充用友U8数据

文章目录 1、需求及效果1.1 需求1.2 效果 2、思路及实现步骤2.1 思路2.2 实现步骤 3.结语 1、需求及效果 1.1 需求 在OA中填写表单中时候&#xff0c;比如物料号还需要从U8中查找后才能填写&#xff0c;非常的麻烦。想要在填写表单的时候可以搜索&#xff0c;并且带出其他的关…

如何查看串口号和波特率?

serialport引入后&#xff0c;设备也接上了&#xff0c;一直不知道串口号和波特率去哪里找&#xff0c;当时这个问题困扰了我很久 将设备的线插入到电脑上的插口(串口)桌面的【此电脑】上右击选择管理&#xff0c;打开【设备管理器】在【端口】中找到对应的端口&#xff0c;如果…

【linux】软链接创建(linux的快捷方式创建)

软连接的概念 类似于windows系统中的快捷方式。有的文件目录很长或者每次使用都要找很不方便&#xff0c;于是可以用类似windows的快捷方式的软链接在home&#xff08;初始目录类似于桌面&#xff09;上创建一些软链接方便使用。 软链接的语法 ln -s 参数1 参数2 参数1&#…

智慧园区数字孪生智能可视运营平台解决方案:PPT全文82页,附下载

关键词&#xff1a;智慧园区解决方案&#xff0c;数字孪生解决方案&#xff0c;数字孪生应用场景及典型案例&#xff0c;数字孪生可视化平台&#xff0c;数字孪生技术&#xff0c;数字孪生概念&#xff0c;智慧园区一体化管理平台 一、基于数字孪生的智慧园区建设目标 1、实现…

SpringMVC零基础入门 - 概述、入门搭建、PostMan的使用(常见数据类型的传输)、REST风格编程

SpringMVC零基础入门 - 概述、入门搭建、PostMan的使用(常见数据类型的传输)、REST风格编程 SpringMVC是隶属于Spring框架的一部分&#xff0c;主要是用来进行Web开发&#xff0c;是对Servlet进行了封装SpringMVC是处于Web层的框架&#xff0c;所以其主要的作用就是用来接收前…

解决“win11无法识别U盘“问题

在15.6寸笔记本上插上U盘&#xff0c;有时候出现U盘无法识别的现象&#xff0c;出现这种问题的原因有许多&#xff0c;比如U盘的格式不被当前电脑支持、电脑的USB接口电压过低、没有安装U盘驱动等等。     若是U盘格式不支持&#xff0c;则把U盘改成电脑能够识别的格式&#…

字符串处理(将字符串中符合十六进制数据格式的数字和字符按照其对应的十进制数值进行累加) C语言xdoj704

题目描述&#xff1a; 输入由数字和字符构成的字符串&#xff08;不包含空格&#xff09;&#xff0c;将字符串中符合十六进制数据格式的数字和字符按照其对应的十进制数值进行累加&#xff0c;并输出累加结果&#xff0c;如果字符串中不含有任何满足十六进制格式的字符&#x…