survey和surveyCV:如何用R语言进行复杂抽样设计、权重计算和10折交叉验证?

一、引言

在实际调查和研究中,我们往往面临着样本选择的复杂性。复杂抽样设计能够更好地反映真实情况,提高数据的代表性和可靠性。例如,多阶段抽样可以有效地解决大规模调查的问题,整群抽样能够在保证样本的随机性的同时减少资源消耗。由于复杂抽样设计中不同样本的选取概率不一致,为了确保结果的准确性和代表性,需要对样本进行加权处理。通过权重计算,我们可以将不同样本的贡献考虑进去,使得结果更符合总体情况。例如,在人口统计学研究中,根据样本的权重可以更准确地估计总体的特征。在机器学习领域,评估模型的性能和泛化能力是一个关键问题。10折交叉验证是一种常用的方法,它将数据集划分为10个部分,通过多次训练和测试来评估模型的性能。交叉验证可以减少过拟合的可能性,并提供对模型稳定性的评估。

本文旨在介绍使用R语言中的survey和surveyCV包进行复杂抽样设计、权重计算和10折交叉验证的方法,以帮助研究人员更好地处理复杂抽样数据和评估模型的性能。

二、复杂抽样设计

2.1 复杂抽样设计的概念和原理

「复杂抽样设计」是指在调查研究中采用的一种非随机抽样方法,在这种方法中,样本的选择不是简单地从总体中按概率随机选择,而是根据某些特定的规则和条件进行选择。复杂抽样设计通常包括分层、簇抽样和多阶段抽样等。

2.2 创建抽样设计对象

在R语言中,使用survey包可以轻松创建复杂抽样设计对象。其中,svydesign()函数可用于创建一个抽样设计对象,该对象包含了复杂抽样设计的信息,如分层、簇和权重等参数。

例如,以下代码创建了一个简单的分层抽样设计对象:

  • 「载入依赖包和数据集」
library(survey)
library(surveyCV)
data(api)
head(apiclus1)

数据集展示:

             cds stype            name                      sname snum               dname dnum   cname cnum flag pcttest api00 api99 target growth sch.wide comp.imp both awards meals ell
1 01612910137588     H San Leandro Hig           San Leandro High  236 San Leandro Unified  637 Alameda    1   NA      97   608   562     12     46      Yes      Yes  Yes    Yes    19  22
2 01612916002372     E Garfield Elemen        Garfield Elementary  237 San Leandro Unified  637 Alameda    1   NA     100   684   554     12    130      Yes      Yes  Yes    Yes    39  23
3 01612916002398     E Jefferson Eleme       Jefferson Elementary  238 San Leandro Unified  637 Alameda    1   NA     100   612   528     14     84      Yes      Yes  Yes    Yes    39  27
4 01612916002414     E Madison (James) Madison (James) Elementary  239 San Leandro Unified  637 Alameda    1   NA     100   710   669      7     41      Yes       No   No     No    23  17
5 01612916002422     E McKinley Elemen        McKinley Elementary  240 San Leandro Unified  637 Alameda    1   NA      99   729   660      7     69      Yes      Yes  Yes    Yes    43  27
6 01612916002430     E Monroe Elementa          Monroe Elementary  241 San Leandro Unified  637 Alameda    1   NA     100   714   673      6     41      Yes      Yes  Yes    Yes    36  24
  yr.rnd mobility acs.k3 acs.46 acs.core pct.resp not.hsg hsg some.col col.grad grad.sch avg.ed full emer enroll api.stu fpc     pw
1     No       15     NA     NA       27       90      14  22       27       30        6   2.93   82   23   1689    1358 757 33.847
2     No       23     19     30       NA       85       8  22       38       24        8   3.02   79   21    288     223 757 33.847
3     No       25     21     30       NA       95      12  24       40       18        6   2.83   72   31    294     220 757 33.847
4     No       39     19     26       NA       92       4  26       38       18       14   3.12   75   25    143     110 757 33.847
5     No       23     22     30       NA       85      11  37       26       22        4   2.71  100    0    307     239 757 33.847
6     No       17     21     28       NA       97      10  30       33       19        7   2.85   89    7    311     265 757 33.847
  • 「抽样」
# 分层抽样
dstrat <- svydesign(id = ~cds, strata = ~stype, weights = ~pw, data = apiclus1, fpc = ~fpc)

# 一阶段段抽样
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

# 二阶段抽样:根据人口数量赋予权重
dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

2.3 指定分层、簇和权重等参数

指定分层、簇和权重等参数非常重要,因为这些参数对数据分析和估计结果产生重要影响。以下是一些常用参数的解释:

分层(strata):在总体中将样本按照某种特定特征分为若干层,然后从每一层中随机抽取样本。
簇(clusterID):将总体划分为若干个簇,在每个簇中按概率随机抽取样本。这种方法通常用于调查面积较大或者人口稀疏的总体。
权重(weights):为了使样本能够代表总体,需要对样本进行加权处理,通常使用与样本相关的某个指标作为权重。

2.4 抽样设计对象的数据分析和估计

使用svydesign()函数创建抽样设计对象之后,就可以使用survey包中的其他函数对数据进行分析和估计了。

  • 使用svytotal()函数计算总体估计值:
# ~enroll表示统计enroll变量的总体估计值
svytotal(~enroll,dclus1)

结果展示:

> svytotal(~enroll,dclus1)
         total     SE
enroll 3404940 131697
  • 还可以使用svymean()函数计算加权均值:
svymean(~enroll,dclus1)

结果展示:

> svymean(~enroll,dclus1)
         mean     SE
enroll 549.72 21.262

三、权重计算

3.1 权重计算简介

「权重计算」是在复杂抽样设计中必不可少的一步,它的目的是根据样本的选取概率和不同样本的贡献,调整样本的权重,以更准确地估计总体参数。在实际调查和研究中,由于样本的选取方式和概率不一致,可能会导致样本在某些特征上受到过度或不足的代表性。通过权重计算,我们可以修正这种偏差,使得估计结果更加准确、可靠。

3.2 加权分析

在R语言中,可以使用survey包中的函数进行加权分析,常用的函数有svytotal()svyglm()

使用svytotal()函数计算加权平均值

weighted_mean <- svymean(~ pw + fpc,dclus1)
weighted_mean

结果展示:

       mean SE
pw   33.847  0
fpc 757.000  0

四、示例演示

假设咱们想了解growth和full线性关系,nfolds代表你想用多少折,其他都是一些调查函数的参数。

  • 「生成抽样数据」
dstrat <- svydesign(id = ~cds, strata = ~stype, weights = ~pw, data = apiclus1, fpc = ~fpc)

bcSvy2<-update(dstrat,fullcut=cut(full,c(50,70,90,Inf),right=FALSE))

weights_mean <- svymean(~fullcut, bcSvy2)

# 1. 条形图
barplot(weights_mean, names.arg=c("半饱","饱腹","全饱"),
col=c("red","purple","blue"),
main="饱腹条形图")

# 2. 箱线图 (成长随饱腹的变化)
svyboxplot(growth~fullcut,bcSvy2,all.outliers=T,col=c("red","purple","yellow","blue"))

# 3. 饱腹的密度直方图
svyhist(~full, bcSvy2, main="密度直方图",col="purple")

「直方图」 「箱线图」 「密度直方图」

  • 「线性拟合」
# 模型拟合
glmstrat<- svyglm(growth~full + meals + mobility, design = dstrat)
cv.svyglm(glmstrat,nfolds = 10)

# 10折交叉验证
cv.svydesign(formulae = c("growth~full""growth~full + meals","growth~full + meals + mobility"), design_object = dstrat, nfolds = 10)

结果展示:

# 结果1
           mean     SE
.Model_1 822.92 89.537

# 结果2
           mean     SE
.Model_1 863.07 91.725
.Model_2 830.43 89.514
.Model_3 842.21 90.206

这样就轻松出结果了,非常方便好用。我们可以看到添加协变量meals以后,MSE出现明显变化,变小了;然后添加协变量mobility以后,MSE反而变大了;表明添加合适的协变量有助于较少MSE。

  • 「加权抽样和普通数据训练的模型比较」
glm <- glm(growth~full + meals + mobility, data = apiclus1)
summary(glm)
summary(glmstrat)


y_test <- apiclus1$growth
# 使用glm模型进行预测
glm_predictions <- predict(glm, newdata = apiclus1)

# 计算均方误差(MSE)
mse <- mean((y_test - glm_predictions)^2)
# 计算平均绝对误差(MAE)
mae <- mean(abs(y_test - glm_predictions))
mse
mae

# 创建渐变色调函数
col_fun <- colorRampPalette(colors = c("blue""yellow"))

# 绘制散点图
plot(y_test, glm_predictions, xlab = "True Values", ylab = "Predictions"
     col = col_fun(100)[as.integer(glm_predictions)])

# 绘制对角线
abline(a = 0, b = 1, col = "red")

# 使用glmstrat模型进行预测
glmstrat_predictions <- predict(glmstrat, newdata = apiclus1)

# 计算均方误差(MSE)
mse <- mean((y_test - glmstrat_predictions)^2)
# 计算平均绝对误差(MAE)
mae <- mean(abs(y_test - glmstrat_predictions))

# 绘制散点图
plot(y_test, glmstrat_predictions, xlab = "True Values", ylab = "Predictions"
     col = col_fun(100)[as.integer(glm_predictions)])

# 绘制对角线
abline(a = 0, b = 1, col = "red")

结果展示:

> summary(glm)

Call:
glm(formula = growth ~ full + meals + mobility, data = apiclus1)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 53.04390   20.05615   2.645   0.0089 **
full        -0.34581    0.20526  -1.685   0.0938 . 
meals        0.26158    0.08723   2.999   0.0031 **
mobility     0.07024    0.19473   0.361   0.7188   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 814.2966)

    Null deviance: 161138  on 182  degrees of freedom
Residual deviance: 145759  on 179  degrees of freedom
AIC: 1751.8

Number of Fisher Scoring iterations: 2

> summary(glmstrat)

Call:
svyglm(formula = growth ~ full + meals + mobility, design = dstrat)

Survey design:
svydesign(id = ~cds, strata = ~stype, weights = ~pw, data = apiclus1, 
    fpc = ~fpc)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 53.04390   18.35664   2.890  0.00434 **
full        -0.34581    0.19468  -1.776  0.07740 . 
meals        0.26158    0.08250   3.171  0.00179 **
mobility     0.07024    0.17713   0.397  0.69219   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 800.8741)

Number of Fisher Scoring iterations: 2
  • 「glm」

  • 「svyglm」

从图中可以看出,蓝色点的数量svyglm要比glm多,相对来说svyglm是比glm表现的更优秀的。

五、结论

  • 使用survey和surveyCV包进行复杂抽样设计、权重计算和10折交叉验证的优势和应用:

  1. 「复杂抽样设计」:survey包提供了一系列函数和方法,可以处理各种复杂抽样设计,如分层抽样、整群抽样和多阶段抽样。这些函数和方法可以帮助研究人员更准确地估计总体参数,并提供了对设计效应的评估。
  2. 「权重计算」:survey包还提供了计算调查数据权重的功能。通过为每个观测值分配适当的权重,可以反映样本在总体中的分布情况。这对于进行总体推断和解决非随机抽样带来的偏倚问题非常重要。
  3. 「10折交叉验证」:surveyCV包是survey包的扩展,提供了支持复杂抽样设计的交叉验证功能。它可以自动处理复杂抽样设计的数据集划分,并在每个折叠中生成正确的训练和测试数据子集。这有助于评估和比较不同模型的性能,并选择最佳模型。
  • 「应用前景和发展方向」

R语言在复杂抽样设计、权重计算和交叉验证方面具有广泛的应用前景。survey和surveyCV包为研究人员提供了强大的工具,以便更好地处理复杂抽样设计的调查数据,并进行准确的统计推断和模型评估。

未来,R语言在这些任务中的发展方向可能包括:

  1. 「扩展功能」:随着调查数据变得更加复杂和多样化,R语言可能会进一步扩展survey和surveyCV包的功能,以适应更多类型的抽样设计和权重计算需求。此外,还可以考虑增加更多的交叉验证方法和评估指标,以支持更广泛的模型选择和性能评估。
  2. 「算法优化」:为了处理大规模和高维度的调查数据,R语言可能会优化survey和surveyCV包中的算法和计算效率。这将有助于提高计算速度和内存使用效率,使其更适用于大型数据集和高性能计算环境。
  3. 「教育和培训资源」:为了促进广泛的应用和推广,R语言社区可能会提供更多的教育和培训资源,例如教程、示例代码和案例研究。这将帮助研究人员更好地理解和应用survey和surveyCV包中的方法和技术。

综上所述,R语言在复杂抽样设计、权重计算和交叉验证方面具有广泛的应用前景,并且可能会在功能扩展、算法优化和教育资源方面得到进一步发展。这些工具和资源将为研究人员提供更好的数据分析和模型评估方法,帮助他们做出更准确和可靠的推断和决策。

*「未经许可,不得以任何方式复制或抄袭本篇文章之部分或全部内容。版权所有,侵权必究。」

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/620497.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

腾讯云添加SSL证书

一、进入腾讯云SSL证书&#xff1a; ssl证书控制台地址 选择“我的证书”&#xff0c;点击"申请免费证书" 2、填写域名和邮箱&#xff0c;点击“提交申请” 在此页面中会出现主机记录和记录值。 2、进入云解析 DNS&#xff1a;云解析DNS地址 进入我的解析-记录…

QT DAY5作业

1.QT基于TCP服务器端 头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器类 #include <QMessageBox> //消息对话框类 #include <QTcpSocket> //客户端类 #include <QList> //链表容器类namespace …

Center审计策略表安装和策略添加(事务)——(Linux/Windows版本)

本博客主要讲述Center的审计策略表安装和策略添加 使用事务添加 1、开启事务 my->StartTransaction(); 2、编写sql语句 //清除原来数据&#xff0c;防止数据污染my->Query("DROP TABLE IF EXISTS t_strategy");string sql "CREATE TABLE t_strategy (…

世微AP630X地摊灯 手电筒方案 可充电多功能LED灯

1,信息来源&#xff1a;深圳市世微半导体有限公司 Augus 2,产品的特性有&#xff1a; 全集成单芯片控制 5 照明循环模式可选 0.5A/1A 固定充电电流可选 内置 MOS 1.8A 驱动电流 可外置 MOS 驱动更大电流 充电指示/低电提示/短路提示 3A 手电筒过流保护? 预设 4.22V 电…

云原生分布式多模架构:华为云多模数据库 GeminiDB 架构与应用实践

文章目录 前言一、GeminiDB 总体介绍1.1、华为云数据库全景图1.2、GeminiDB 发展历程1.3、GeminiDB 全球分布情况 二、GeminiDB 云原生架构2.1、核心设计&#xff1a;存算分离&多模扩展2.2、存算分离&多模扩展核心优势2.3、高可用&#xff1a;秒级故障接管2.4、弹性扩展…

Sonar Qube基本使用

中文化 Sonar Qube的使用方式很多&#xff0c;Maven可以整合&#xff0c;也可以采用sonar-scanner的方式&#xff0c;再查看Sonar Qube的检测效果 Sonar-scanner实现代码检测 下载Sonar-scanner&#xff1a;https://binaries.sonarsource.com/Distribution/sonar-scanner-cli/…

强化学习应用(六):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法&#xff0c;用于解决基于马尔可夫决策过程&#xff08;MDP&#xff09;的问题。它通过学习一个价值函数来指导智能体在环境中做出决策&#xff0c;以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…

【深度学习】Anaconda3 + PyCharm 的环境配置 3:GitHub 项目运行前的环境配置

前言 文章性质&#xff1a;实操记录 &#x1f4bb; 主要内容&#xff1a;主要记录了运行 GitHub 项目前的环境配置过程&#xff0c;包括创建并激活新的虚拟环境、安装 torch 和 torchvision&#xff0c;在 PyCharm 中使用新建的虚拟环境&#xff0c;根据项目源代码提供的 requi…

androidkiller的两种异常情况

第一种反编译时异常&#xff1a; Exception in thread “main” org.jf.dexlib2.dexbacked.DexBackedDexFile$NotADexFile: Not a valid dex magic value: cf 77 4c c7 9b 21 01 修改方法&#xff1a; 编辑 AndroidKiller 的 bin/apktool 目录下有一个 apktool.bat 文件 修改成…

AI智能创作软件,颠覆你的写作体验

你是否想过&#xff0c;有一天&#xff0c;文字创作不再受限于人的思维和表达能力&#xff1f;AI智能文章创作就是这样一个神奇的存在。它运用先进的自然语言处理技术&#xff0c;通过对大量数据的深度学习&#xff0c;根据需要自动生成文章。你只需输入关键词或主题&#xff0…

我们做了个写论文解读的agent

已经2024年了&#xff0c;该出现一个论文解读AI Agent了。 尽管我们公司的主营业务不是做这块的&#xff0c;但&#xff0c;我们还是顺手做了这样一个agent&#xff0c;因为——我们公司的算法同学也需要刷论文啊喂&#xff0c; 而且我们也经常人工写论文解读嘛&#xff0c;所…

MySQL面试题 | 05.精选MySQL面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

VMware 安装及创建一个 CentOS Stream 的详细指南

文章目录 1. 简介2. 下载和安装1&#xff09;通过官网安装2&#xff09;通过电脑管家安装 3. 下载操作系统镜像包4. 创建虚拟机结语 1. 简介 在过去&#xff0c;服务器通常是运行单一操作系统和应用程序的物理设备。这就导致了硬件资源浪费和管理复杂性的增加。为了解决这些问…

[Beego]1.Beego简介以及beego环境搭建,bee脚手架的使用,创建,运行项目

一.Beego介绍 Beego是一个开源的基于Golang的MVC框架&#xff0c;主要用于Golang Web开发,Beego可以用来快速开发API、Web、后端服务等各种应用。 Golang 的Web开发框架有很多,从 github star 数量来看Gin>Beego>lris>Echo>Revel>Buffalo 目前国内用的比较多的就…

mysql从入门到放弃之数据库体系结构与管理

文章目录 前言一、体系结构1、mysql c/s结构介绍2、mysql实例组成3、mysqld程序运行原理3.1、mysqld守护进程结构3.2、 引入sql语句结构化的查询语言3.3、探索一条SQL语句的执行过程 二、mysql逻辑存储结构三、mysql物理存储结构3.1、innodb存储引擎的段、区、页之间的关系 四、…

html5基础入门

html5基础语法与标签 前言前端开发零基础入门介绍前端开发行业介绍&#xff1a;大前端时代&#xff1a;前端开发主要技术介绍学习方法IDE简介vscode快捷键&#xff1a; 总结 HTML语法与基础标签互联网基本原理HTTP协议&#xff08;请求、响应&#xff09;什么是前端、后端&…

openssl3.2 - 官方demo学习 - cms - cms_ver.c

文章目录 openssl3.2 - 官方demo学习 - cms - cms_ver.c概述运行结果笔记END openssl3.2 - 官方demo学习 - cms - cms_ver.c 概述 CMS验签, 将单独签名和联合签名出来的签名文件都试试. 验签成功后, 将签名数据明文写入了文件供查看. 也就是说, 只有验签成功后, 才能看到签名…

PyTorch损失函数

一、损失函数是什么 损失函数&#xff1a;衡量模型输出与真实标签的差异 class _Loss(Module):def __init__(self, size_averageNone, reduceNone, reductionmean):"""Loss函数的基类&#xff0c;定义了一些通用的属性和方法。参数&#xff1a;- size_average…

vmware和ubuntu镜像下载地址

这里有vmware16和ubuntu20.0下载 链接&#xff1a;https://pan.baidu.com/s/1i9IC-KnJlrVDbl6SJ5SIKQ?pwdy2dd 提取码&#xff1a;y2dd 链接&#xff1a;https://pan.baidu.com/s/1imqJVD2dLE1TB6jIrq1-Fg?pwd690f 提取码&#xff1a;690f 这个是我本人下的vmware17 密钥可…

解决命令行无法启动scrapy爬虫

前言 最近在准备毕设项目&#xff0c;想使用scrapy架构来进行爬虫&#xff0c;找了一个之前写过的样例&#xff0c;没想到在用普通的启动命令时报错。报错如下 无法将“scrapy”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写&#xff0c;如果包括路径…