MATLAB - 机器人关节空间运动模型

系列文章目录


前言

关节空间运动模型描述了在闭环关节空间位置控制下机械手的运动,在关节空间运动模型(jointSpaceMotionModel)对象和关节空间运动模型块中使用。

机器人机械手是典型的位置控制设备。要进行关节空间控制,需要指定关节角度或位置向量 q,以跟踪参考配置 q 参考 . 为此,您可以对机器人关节进行闭环控制,并使用运动模型模拟机器人在此控制下的行为。

要使这种方法最接近实际系统的运动,就必须准确表示控制器和被控对象的动态。本主题将介绍在闭环联合空间位置控制下的机器人行为建模方法:

  • 作为受计算扭矩控制的系统
  • 作为受 PD 控制的系统
  • 作为具有独立关节运动的系统


一、背景介绍

1.1 关节空间运动模型与任务空间运动模型

一般来说,机器人位置控制分为两类:

  • 关节空间运动控制 - 在这种情况下,机器人的位置输入被指定为一个关节角度或位置向量,即机器人的关节配置 q。 ref 这也被称为配置空间控制。
  • 任务空间运动控制 - 将位置指定为控制器的末端执行器姿势。然后,控制器驱动机器人的关节配置值将末端执行器移动到指定位置。这有时被称为操作空间控制。

下图显示了这两种运动控制中不同类型的输入/输出。

本专题页专门讨论关节空间运动控制,如 jointSpaceMotionModel 对象和关节空间运动模型块中所使用。有关任务空间运动模型,请参阅任务空间运动模型对象。如需更详细了解任务空间和联合空间控制之间的区别,请参阅使用 KINOVA Gen3 机械手计划和执行任务空间和联合空间轨迹的示例。

1.2 在 MATLAB® 和 Simulink® 中使用

关节空间运动模型可以在 MATLAB 或 Simulink 中表示。

在 Simulink 中,关节空间运动模型块接受参考输入和可选外力(如适用),并返回关节配置、速度和加速度。该程序块可处理积分,因此无需额外的积分。

在 MATLAB 中,jointSpaceJointModel 系统对象对闭环运动进行建模。导数方法返回关节配置、速度和加速度在每一时刻的导数,因此必须使用 ODE 求解器或等效的外部积分方法来模拟时间运动。

有关更具体的概述,请参阅相关文档页面。

二、状态

关节空间运动模型的状态由这些值组成:

q - 机器人关节配置,作为关节位置矢量。旋转关节以 rad 为单位,棱柱关节以 m 为单位。

\dot{q} - 关节速度矢量,旋转关节以 r a d\cdot s^{-1} 为单位,棱柱关节以 m\cdot s^{-1} 为单位。

\ddot{q} - 关节加速度矢量,对于旋转关节,单位为 r a d\cdot s^{-2} ;对于棱柱关节,单位为 m\cdot s^{-2}

三、闭环关节空间运动类型的运动方程

当需要闭环控制下系统的低保真模型,且输入指定为关节配置、速度和加速度时,可使用关节空间运动模型。运动模型包括三种整体行为建模方式:

  • 计算转矩控制下的系统 - 刚体动力学建模采用标准刚体机器人动力学,但对全身动力学进行补偿并分配误差动力学。
  • PD 控制下的系统 - 刚体动力学建模采用标准刚体机器人动力学,并通过比例-派生 (PD) 控制和重力补偿提供关节扭矩输入。该模型所代表的控制器没有对刚体运动的整体效应进行严格补偿。
  • 作为具有独立关节运动的系统 - 每个关节都被独立建模为配置不变的闭环二阶系统。该模型的保真度较低,忽略了机器人的动态特性,并假定为闭环响应。在没有外力作用的情况下,该模型可视为闭环运动的最佳表现形式,因为其动力学特性已被简化并直接规定。

要设置这些不同的运动类型,请使用 jointSpaceMotionModel 对象的 MotionType 属性。这些运动类型并不是详尽无遗的,但它们确实提供了一组在近似系统闭环行为时可以使用的选项。有关何时使用哪种模型的详细信息和建议,请参阅以下章节。

在接下来的章节中,将按照复杂程度递减的顺序介绍每种模型的运动方程。这里的复杂度是指特定运动模型的计算量。高复杂度变量通过直接模拟环路内的控制器和动力学来模拟受相当先进的控制器影响的动力学,而低复杂度模型则使用简化的动力学来表示整体误差行为。

3.1 符号和术语

闭环系统的许多运动方程都源自标准刚体机器人动力学,后者定义了机器人的开环运动。此外,方程中还经常会使用一个斜杠来表示误差动态,例如 \tilde{q}=q-q_{r e f}.

3.2 计算扭矩控制

当运动模型被定义为受计算扭矩控制的机器人时,运动模型使用标准刚体机器人动力学,但广义力输入由控制法则提供,该法则对刚体动力学进行补偿,并分配二阶误差动力学响应。

输入 - 该模型接受 q r e f,\dot{q}r e f,\ddot{q}r e f 作为所需的参考关节配置、速度和加速度矢量。用户还可以选择提供一个外力和扭矩矩阵 Fext,以牛顿和牛顿-米为单位,使用 externalForce 函数生成。

输出 - 模型以向量形式输出关节配置、速度和加速度 q,{\dot{q}},{\ddot{q}}。在 MATLAB 版本的模型中,只返回加速度,用户必须选择积分器或 ODE 解算器来返回其他状态。

复杂性--这是一个高复杂性模型。运动模型使用带有可选外力的全刚体动力学,控制器作为闭环系统的一部分进行建模,控制器包含动态补偿项。

何时应用 - 当模拟的闭环系统具有可近似误差的动力学特性时,或当使用的控制器将机器人视为多体系统,且可能存在外力时,可使用该功能。

由此产生的闭环系统旨在实现第 i 个关节的以下第二误差行为:

\ddot{\tilde{q}}_{i}=-\omega_{n}^{2}{\tilde{q}_{i}}-2\zeta\omega_{n}\dot{\tilde{q}}_{i}

{\tilde{q}}_{i}=q_{i}-q_{i.{ref}}

这些参数描述了为每个关节定义的理想响应:

\omega _n - 自然频率,单位为赫兹{Hz}\left(s^{-1}\right)

ζ - 阻尼比,无单位

 

 如图所示,整个系统由标准刚体机器人动力学和控制法则组成,控制法则通过广义力输入 Q 强化闭合误差动力学:

 {\dfrac{d}{d t}}\begin{bmatrix} q\\ \dot{q} \end{bmatrix}=f_{d y n}(q,{\dot{q}},Q,F _{e x t})

Q=g C T {C}(\tilde{q},\dot{\tilde{q}},\ddot{​{q}}_{ref},\omega _n,\zeta)=M(q)a _q+C(q,\dot{q})\dot{q}+G(q) 

a_{q}=\ddot{q}_{r e f}-\left[\omega_{n}^{2}\right]_{d i a g}\tilde{q}-\left[2\zeta\omega_{n}\right]_{d i a g}\dot{\tilde{q}}

{\tilde{q}}=q-q r e f

其中

M(q) - 是基于当前机器人配置的联合空间质量矩阵 使用 massMatrix 对象函数计算该矩阵。

C({\boldsymbol{q}},{\dot{\boldsymbol{q}}}) - 科里奥利项。它与关节速度一起构成速度乘积 C(q,\dot{q})\dot{q},可使用速度乘积对象函数计算。

G(q) - 在指定重力条件下,由于作用在机器人上的重力重量和力量,所有关节为保持其位置所需的力矩和力量。使用重力力矩对象函数计算重力力矩。

\left[\omega_{n}^{2}\right]_{d i a g} - 关节空间运动模型(jointSpaceMotionModel)对象的自然频率(NaturalFrequency)属性中的自然频率 N 乘 N 对角矩阵,单位为 Hz(s^{-1})。

\left[2\zeta\omega_{n}^{2}\right]_{d i a g} - 自然频率 n 的平方乘积与 jointSpaceMotionModel 对象的 DampingRatio 属性中指定的阻尼比 ζ 的 N-by-N 对角矩阵。

ωn 和 ζ 的值可以直接设置,也可以使用 updateErrorDynamicsFromStep 方法提供,该方法根据所需的单位步响应(使用瞬态行为特征定义)计算 ωn 和 ζ 的值。

由于对动态进行了补偿,因此在没有外力输入的情况下,假设反馈项连续积分且无时间延迟,就能实现误差动态。因此,在没有外力的情况下,独立关节运动类型为相同运动提供了一种更简单的建模方式。

有关机器人动力学的更多信息,请参阅机器人动力学。

3.3 比例-微分 (PD) 控制

当机器人被定义为受 PD 控制的系统时,机器人将根据标准刚体机器人动力学建立行为模型,但其广义力输入 Q 由控制法则给出,该法则根据关节误差和重力补偿应用 PD 控制。

输入 - 该模型接受 $q _{r e f},{\dot{q}}_{r e f}$ 作为所需的参考关节配置和速度(以向量形式指定)。用户还可以选择提供外力和扭矩 Fext,以牛顿和牛顿-米为单位,使用 externalForce 函数生成。

输出--模型输出 q,{\dot{q}},{\ddot{q}} 为关节配置、速度和加速度。在 MATLAB 版本的模型中,只返回加速度,用户必须选择积分器或 ODE 求解器来返回其他状态。

复杂性 - 中等复杂性。运动模型使用带有可选外力的全刚体动力学,控制器作为闭环系统的一部分建模,但控制器相对简单。

何时应用 - 当模拟的闭环系统使用将关节视为独立系统的控制器时,或使用 PD 型控制器且可能存在外力时,请使用该控制器。

与计算扭矩控制一样,该系统行为采用标准刚体机器人动力学,但使用 PD 控制法定义广义力输入 Q:

\begin{aligned}&\frac d{dt}\begin{bmatrix}q\\\dot{q}\end{bmatrix}=f_{dyn}(q,\dot{q},\tau,F{ext})\\\\&Q=g_{PD}(\widetilde{q},\dot{\widetilde{q}},K_P,K_D)=-K_P(\widetilde{q})-K_D(\dot{\widetilde{q}})+G(q)\\\\&\widetilde{q}=q-qref\end{aligned}

其中

G(q) - 是所有关节在刚体树的重力属性中指定的重力下保持位置所需的重力扭矩和力。使用 gravityTorque 对象函数计算重力扭矩。

控制输入依赖于这些用户定义的参数:

K_P - 比例增益,指定为 N 乘 N 矩阵,其中 N 为机械手可移动关节的数量

K_D - 微分增益,指定为 N 乘 N 矩阵

3.4 独立关节运动

在对该系统进行独立关节运动建模时,不是将闭环系统建模为标准刚体机器人动力学加控制输入,而是将每个关节建模为二阶系统,该系统已具有所需的误差行为:

  • 输入 - 该模型接受 qref , \dot{q}ref 作为所需的参考关节配置和速度(以矢量形式给出)。没有外力输入。
  • 输出 - 模型输出 q,\dot{q},\ddot{q} 作为关节配置、速度和加速度。在该模型的 MATLAB 版本中,只返回加速度,用户必须选择积分器或 ODE 求解器来返回其他状态。
  • 复杂性 - 复杂性较低。运动模型只是规定了位置控制器可以实现的误差行为。
  • 何时应用 - 当系统具有可近似的误差动态,且不需要外力输入时使用。

该系统为第 i 个关节建立了以下闭环二阶行为模型:

\dfrac{d}{dt}\begin{bmatrix}\widetilde{q}\\ \dot{\widetilde{q}}\end{bmatrix}=f_{err}(\widetilde{q},\dot{\widetilde{q}},\zeta,\omega_{n})=\begin{bmatrix}\dot{\widetilde{q}}\\-\omega_{n}^{2}\widetilde{q}i-2\zeta\omega_{n}\widetilde{q}i\end{bmatrix}

\begin{matrix}\widetilde{q}_{i}=q_{i}-q_{i.ref}\\\end{matrix}

\omega _n - 自然频率,单位为赫兹{Hz}\left(s^{-1}\right)

ζ - 阻尼比,无单位

 

因此,整个系统的模型为

\dfrac d{dt}\begin{bmatrix}q\\\dot{q}\end{bmatrix}=flJM(qref,\dot{q}ref,\zeta,\omega n)=\begin{bmatrix}0&I\\\begin{bmatrix}-\omega_n^2\end{bmatrix}_{diag}&[-2\zeta\omega_n]_{diag}\end{bmatrix}\begin{bmatrix}q\\\dot{q}\end{bmatrix}+\begin{bmatrix}0 & I \\ [\omega_{n}^2]_{diag} & [2\zeta\omega_{n}]_{diag}\end{bmatrix}\begin{bmatrix}qref\\\dot{q}ref\end{bmatrix} 

该模型依赖于这些用户定义的参数:

[\omega_n^2]_{diag} - JointSpaceMotionModel 对象的 NaturalFrequency 属性中自然频率的 N-by-N 对角矩阵,单位为 Hz (s-1)。

\left[2\zeta\omega_n^2\right]_{diag} - 自然频率平方和 ωn 与 jointSpaceMotionModel 对象的 DampingRatio 属性中指定的阻尼比 ζ 的乘积的 N-by-N 对角矩阵。

ωn 和 ζ 的值可以直接设置,也可以使用 updateErrorDynamicsFromStep 方法提供,该方法根据所需的单位步响应(使用瞬态行为特征定义)计算 ωn 和 ζ 的值。

独立关节运动模型代表了理想化行为下的闭环系统。在没有外力的情况下,假设反馈没有延迟(如连续积分),使用计算扭矩控制的运动模型会产生等效输出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/620416.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flask 小程序菜品搜索

mina/pages/food/index.wxml <!--index.wxml--> <!--1px 750/320 2.34rpx;--> <view class"container"><!--轮播图--><view class"swiper-container"><swiper class"swiper_box" autoplay"{{autoplay}…

直播预告丨看零售场,如何玩转 MaaS

今年&#xff0c;有一个被频繁提及的词是MaaS 这类工具正在帮助千行百业实现大模型落地产业 在零售场&#xff0c;特别是像京东这样拥有超高并发、超复杂协同的电商场内 也沉淀出了一套通用的AI基础设施——九数算法中台 从提升客户服务体验、平台效率出发&#xff0c;训练各…

【Python】数据可视化--基于TMDB_5000_Movie数据集

一、数据准备 tmdb_5000_movie数据集下载 二、数据预处理 观察数据集合情况 import pandas as pd import ast import warnings warnings.filterwarnings(ignore) # 加载数据集 df pd.read_csv(tmdb_5000_movies.csv) # 查看数据集信息 print(df.info()) 由于原数据集包含的…

Jenkins集成Sonar Qube

下载插件 重启Jenkins 容器 sonarqube 使用令牌 Jenkins 配置 重新构建

小程序基础学习(多插槽)

先创建插槽 定义多插槽的每一个插槽的属性 在js文件中启用多插槽 在页面使用多插槽 组件代码 <!--components/my-slots/my-slots.wxml--><view class"container"><view class"left"> <slot name"left" ></slot>&…

YOLOv8改进 | 注意力篇 | 实现级联群体注意力机制CGAttention (全网首发)

一、本文介绍 本文给大家带来的改进机制是实现级联群体注意力机制CascadedGroupAttention,其主要思想为增强输入到注意力头的特征的多样性。与以前的自注意力不同,它为每个头提供不同的输入分割,并跨头级联输出特征。这种方法不仅减少了多头注意力中的计算冗余,而且通过增…

八爪鱼拉拉手

欢迎来到程序小院 八爪鱼拉拉手 玩法&#xff1a;点击鼠标左键拖动移动八爪鱼&#xff0c;当他的手很忙的时候他会很高兴&#xff0c; 不同关卡不同的八爪鱼的位置摆放&#xff0c;快去闯关吧^^。开始游戏https://www.ormcc.com/play/gameStart/248 html <div id"gam…

GCC工具源码编译

文章目录 背景一、下载源码二、编译前依赖准备2.1 相关工具依赖2.2 相关lib&#xff08;gmp/ mpfr /mpc&#xff09;依赖2.2.1 lib源码下载2.2.2 lib源码编译 三、编译GCC3.1 编译3.2 链接 四、报错处理 背景 日常可能涉及到系统里自带GCC版本与被编译源码存在不兼容&#xff…

大模型背景下计算机视觉年终思考小结(一)

1. 引言 在过去的十年里&#xff0c;出现了许多涉及计算机视觉的项目&#xff0c;举例如下&#xff1a; 使用射线图像和其他医学图像领域的医学诊断应用使用卫星图像分析建筑物和土地利用率相关应用各种环境下的目标检测和跟踪&#xff0c;如交通流统计、自然环境垃圾检测估计…

【SSM框架】初识Spring

初识Spring Spring家族 Spring发展到今天已经形成了一种开发的生态圈&#xff0c;Spring提供了若千个项目&#xff0c;每个项目用于完成特定的功能 ✅Spring Framework&#xff08;底层框架&#xff09;Spring Boot&#xff08;提高开发速度&#xff09;Spring Cloud&#xf…

第1课 ROS 系统介绍

1.ROS操作系统介绍 在学习ROS 系统前&#xff0c;我们需要先了解操作系统的定义。操作系统&#xff0c;顾名思义&#xff0c;即提供部分软件和硬件的接口&#xff0c;以供用户直接使用。因此&#xff0c;针对不同的平台、不同的功能&#xff0c;需要采用不同的操作系统来完成底…

智能导诊-医院信息化建设标准

智能导诊系统主要依赖于自然语言处理和机器学习等技术。患者可以通过语音、文字等方式描述病情&#xff0c;系统通过自然语言处理技术对病情进行语义分析和理解。随后&#xff0c;机器学习算法对患者的症状和病情进行推理&#xff0c;结合已有的疾病知识库&#xff0c;为患者提…

canvas设置图形图案、文字图案

查看专栏目录 canvas示例教程100专栏&#xff0c;提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重…

强化学习应用(二):基于Q-learning的物流配送路径规划研究(提供Python代码)

一、Q-learning算法简介 Q-learning是一种强化学习算法&#xff0c;用于解决基于马尔可夫决策过程&#xff08;MDP&#xff09;的问题。它通过学习一个值函数来指导智能体在环境中做出决策&#xff0c;以最大化累积奖励。 Q-learning算法的核心思想是使用一个Q值函数来估计每…

AI大模型学习笔记一

一、商业观点&#xff1a;企业借助大模型获得业务增长可能 二、底层原理&#xff1a;transformer 1&#xff09;备注 ①下面每个步骤都是自回归的过程&#xff08;aotu-regressive&#xff09;&#xff1a;已输出内容的每个字作为输入&#xff0c;一起生成下一个字 ②合起来就…

【GNN2】PyG完成图分类任务,新手入门,保姆级教程

上次讲了如何给节点分类&#xff0c;这次我们来看如何用GNN完成图分类任务&#xff0c;也就是Graph-level的任务。 【GNN 1】PyG实现图神经网络&#xff0c;完成节点分类任务&#xff0c;人话、保姆级教程-CSDN博客 图分类就是以图为单位的分类&#xff0c;举个例子&#xff1…

Open3D 点云等比例缩放(20)

Open3D 点云等比例缩放(20) 一、算法介绍二、算法实现1.代码世人慌慌张张,不过图碎银几两, 偏偏这碎银几两,能解世间万种慌张。 一、算法介绍 实现这样一个功能,沿着中心,按照指定的比例,比如1/2,缩小或者放大点云,保存到新的文件中 二、算法实现 1.代码 import…

小程序基础学习(js混编)

在组件中使用外部js代码实现数据改变 先创建js文件 编写一些组件代码 编写外部js代码 在组件的js中引入外部js 在 app.json中添加路径规则 组件代码 <!--components/my-behavior/my-behavior.wxml--> <view><view>当前计数为{{count}}</view> <v…

Kibana:使用反向地理编码绘制自定义区域地图

Elastic 地图&#xff08;Maps&#xff09;附带预定义区域&#xff0c;可让你通过指标快速可视化区域。 地图还提供了绘制你自己的区域地图的功能。 你可以使用任何您想要的区域数据&#xff0c;只要你的源数据包含相应区域的标识符即可。 但是&#xff0c;当源数据不包含区域…

最新域名群站开源系统:打造强大网站矩阵,引领SEO优化新潮流!

搭建步骤 第一步&#xff1a;安装PHP和MYSQL服务器环境 对于想要深入了解网站建设的人来说&#xff0c;自己动手安装PHP和MYSQL服务器环境是必不可少的步骤。这将使你能够更好地理解网站的运行机制&#xff0c;同时为后续的网站开发和优化打下坚实基础。 第二步&#xff1a;…