【Python机器学习】SVM——线性模型与非线性特征

SVM(核支持向量机)是一种监督学习模型,是可以推广到更复杂模型的扩展,这些模型无法被输入空间的超平面定义。

线模型在低维空间中可能非常受限,因为线和平面的灵活性有限,但是有一种方式可以让线性模型更加灵活,那就是添加更多特征,比如输入特征的交互式或多项式。

以下面的数据集为例:

from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVCplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
line_svc=LinearSVC().fit(X,y)mglearn.plots.plot_2d_separator(line_svc,X)
mglearn.discrete_scatter(X[:,0],X[:,1],y)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

用于分类的线性模型只能用一条直线来划分数据点,对这个数据集无法给出较好的结果。

现在,对输入特征进行扩展,比如添加一个特征的平方作为一个新特征,那么每个数据点可以表示为三维点,而不是二维点,这样就可以做一个新的三维散点图:

import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3dplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
#line_svc=LinearSVC().fit(X,y)
X_new=np.hstack([X,X[:,1:]**2])
figure=plt.figure()#3D可视化
ax=figure.add_subplot(projection='3d')
#首先画出所有y==0,然后画出所有y==1的点
mask=y==0ax.scatter(X_new[mask,0],X_new[mask,1],X_new[mask,2],c='blue',marker='o',cmap=mglearn.cm2,s=60)
ax.scatter(X_new[~mask,0],X_new[~mask,1],X_new[~mask,2],c='red',marker='^',cmap=mglearn.cm2,s=60)
ax.set_xlabel('特征0')
ax.set_ylabel('特征1')
ax.set_zlabel('特征1**2')
plt.show()

 

在数据新的可视化中,可以用线性模型(三维平面将这两个类别区分开)

import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3dplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
X_new=np.hstack([X,X[:,1:]**2])
line_svc_3d=LinearSVC().fit(X_new,y)
coef,intercept=line_svc_3d.coef_.ravel(),line_svc_3d.intercept_figure=plt.figure()#3D可视化
ax=figure.add_subplot(projection='3d')
#首先画出所有y==0,然后画出所有y==1的点
xx=np.linspace(X_new[:,0].min()-2,X_new[:,0].max()+2,50)
yy=np.linspace(X_new[:,1].min()-2,X_new[:,1].max()+2,50)
XX,YY=np.meshgrid(xx,yy)
ZZ=(coef[0]*XX+coef[1]*YY+intercept)/-coef[2]
mask=y==0
ax.plot_surface(XX,YY,ZZ,rstride=8,cstride=8,alpha=0.3)
ax.scatter(X_new[mask,0],X_new[mask,1],X_new[mask,2],c='blue',marker='o',cmap=mglearn.cm2,s=60)
ax.scatter(X_new[~mask,0],X_new[~mask,1],X_new[~mask,2],c='red',marker='^',cmap=mglearn.cm2,s=60)
ax.set_xlabel('特征0')
ax.set_ylabel('特征1')
ax.set_zlabel('特征1**2')
plt.show()

如果将线性SVM模型看做原始特征的函数,那么它实际上已经不是线性的了,它不再是一条直线,而是一个椭圆:

import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3dplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
X_new=np.hstack([X,X[:,1:]**2])
line_svc_3d=LinearSVC().fit(X_new,y)
coef,intercept=line_svc_3d.coef_.ravel(),line_svc_3d.intercept_
xx=np.linspace(X_new[:,0].min()-2,X_new[:,0].max()+2,50)
yy=np.linspace(X_new[:,1].min()-2,X_new[:,1].max()+2,50)
XX,YY=np.meshgrid(xx,yy)
ZZ=YY**2dec=line_svc_3d.decision_function(np.c_[XX.ravel(),YY.ravel(),ZZ.ravel()])
plt.contourf(XX,YY,dec.reshape(XX.shape),levels=[dec.min(),0,dec.max()],cmap=mglearn.cm2,alpha=0.5)
mglearn.discrete_scatter(X[:,0],X[:,1],y)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/619673.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux系统中的IP地址、主机名、和域名解析

1.IP地址 每一台联网的电脑都会有一个地址,用于和其它计算机进行通讯 IP地址主要有2个版本,V4版本和V6版本(V6很少用,暂不涉及) IPv4版本的地址格式是:a.b.c.d,其中abcd表示0~255的数字&…

echarts x轴下增加一组数据的实现方法

实现效果: 关键代码 xAxis: [{type: category,axisTick:{show: false},axisLine:{show: false},axisLabel:{align:center,},data: [9-w2, 9-w3, 343,9-w2, 9-w3, 343]},{type: category,name: 排比变化,nameTextStyle: {verticalAlign: "left",padding:[…

迈入AI智能时代!ChatGPT国内版免费AI助手工具 peropure·AI正式上线 一个想法写一首歌?这事AI还真能干!

号外!前几天推荐的Peropure.Ai迎来升级,现已支持联网模式,回答更新更准,欢迎注册体验: https://sourl.cn/5T74Hu 相信很多人都有过这样的想法,有没有一首歌能表达自己此时此刻的心情: 当你在深…

虚幻UE 特效-Niagara特效初识

虚幻的Niagara特效系统特别的强大,可以为开发者提供丰富的视觉效果! 本篇笔记对Niagara系统进行初步的学习探索 文章目录 前言一、Niagara四大核心组件二、粒子发射器和粒子系统1、粒子发射器的创建2、粒子系统的创建3、Niagara系统的使用 总结 前言 在…

SpringBoot之优化高并发场景下的HttpClient并提升QPS

HttpClient优化思路 使用连接池(简单粗暴) 长连接优化(特殊业务场景) httpclient和httpget复用 合理的配置参数(最大并发请求数,各种超时时间,重试次数) 异步请求优化&#xff0…

个人博客教程(Typora官方免费版)

教程 链接:https://pan.baidu.com/s/1kVk3wxrcAPkIy8VrX7CK7g?pwdigiz 提取码:igiz 其实下面的教程都可以通过右键选择你想要的文本来实现,但是掌握基本的语法可以更快,如果看不懂我写的是什么东西可以查看非常简单的入门教程M…

解密Mybatis-Plus:优雅简化你的数据访问层!

目录 1、引言 2、什么是Mybatis-Plus 3、Mybatis-Plus的特点和优势 4、安装和配置Mybatis-Plus 5、使用Mybatis-Plus进行数据库操作 6、Mybatis-Plus的高级功能 7、Mybatis-Plus的扩展和插件 8、与Spring Boot集成 9、结语 1、引言 Mybatis-Plus是一个强大而优雅的Jav…

科研学习|论文解读——信息世界映射方法

题目:信息世界映射的下一步是什么?在情境中理解信息行为/实践的国际化和多学科方法(What is next for information world mapping? International and multidisciplinary approaches to understanding information behaviors/ practices in …

Feature Fusion for Online Mutual KD

paper:Feature Fusion for Online Mutual Knowledge Distillation official implementation:https://github.com/Jangho-Kim/FFL-pytorch 本文的创新点 本文提出了一个名为特征融合学习(Feature Fusion Learning, FFL)的框架&…

进程的状态

进程状态反映进程执行过程的变化。这些状态随着进程的执行和外界条件的变化而转换。在三态模型 中,进程状态分为三个基本状态,即就绪态,运行态,阻塞态。在五态模型中,进程分为新建态、就绪态,运行态&#x…

井盖异动传感器,守护脚下安全

随着城市化进程的加速,城市基础设施的安全问题日益受到关注。其中,井盖作为城市地下管道的重要入口,其安全问题不容忽视。然而,传统的井盖监控方式往往存在盲区,无法及时发现井盖的异常移动。为此,我们推出…

xtu oj 1329 连分式

题目描述 连分式是形如下面的分式,已知a,b和迭代的次数n,求连分式的值。 输入 第一行是一个整数T(1≤T≤1000),表示样例的个数。 每行一个样例,为a,b,n(1≤a,b,n≤9) 输出 每行输出一个样例的结果,使用x/y分式表达…

Hive数据定义(2)

hive数据定义是hive的基础知识,所包含的知识点有:数据仓库的创建、数据仓库的查询、数据仓库的修改、数据仓库的删除、表的创建、表的删除、内部表、外部表、分区表、桶表、表的修改、视图。在上一篇文章中介绍了一部分知识点,在本篇文章中将…

Vue2.脚手架

全局安装:npm i vue/cli -g检查是否成功安装:vue --version新建项目:vue create 项目名 通过nodejs安装的时候,可以直接代理和仓库,~/.npmrc文件内容如下: proxysocks5://127.0.0.1:7897 registryhttps:/…

Kafka的核心原理

Topic的分区和副本机制 分区有什么用呢? 作用: 1- 避免单台服务器容量的限制: 每台服务器的磁盘存储空间是有上限。Topic分成多个Partition分区,可以避免单个Partition的数据大小过大,导致服务器无法存储。利用多台服务器的存储能力&#…

Matlab数学建模算法之模拟退火算法(SA)详解

🔗 运行环境:Matlab 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥 推荐专栏:《算法研究》 🔐#### 防伪水印——左手の明天 ####🔐 💗 大家…

WEB 3D技术 three.js 聚光灯

本文 我们来说说 点光源和聚光灯 点光源 就像一个电灯泡一样 想四周发散光 而聚光灯就像手电筒一样 像一个方向射过去 距离越远范围越大 光越弱 我们先来看一个聚光灯的效果 我们可以编写代码如下 import ./style.css import * as THREE from "three"; import { O…

【JavaScript】深度理解js的函数(function、Function)

简言 学了这么久的JavaScript,函数在JavaScript中最常用之一,如果你不会函数,你就不会JavaScript。 函数就是Function对象,一个函数是可以通过外部代码调用的一个“子程序”,它是头等(first-class&#xf…

linux 如何创建文件

我们在写一些教程的时候,经常会需要创建一些用于演示的文档,这些文档往往需要填充一些不特定的内容。那么如何快速的创建演示用的文档呢? docfaker.py docfaker.py是一个py脚本,用于创建一个简单的txt文档,docfaker.…

MySQL 从零开始:06 数据检索

文章目录 1、数据准备2、限制结果3、完全限定名4、排序检索 所谓数据检索,就是前面所讲的”增删改查“的”查“。 注:本文使用的“行”指数据表中的“记录”,“列”指数据表中的“字段”。 在第四节《表的增删改查》中已经介绍了 select 查询…