环形链表[简单]

优质博文:IT-BLOG-CN

一、题目

给你一个链表的头节点head,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪next指针再次到达,则链表中存在环。为了表示给定链表中的环,评测系统内部使用整数pos来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回true否则,返回false

快慢指针

可以使用快慢指针法, 分别定义fastslow指针,从头结点出发,fast指针每次移动两个节点,slow指针每次移动一个节点, 如果 fastslow指针在途中相遇,说明这个链表有环。

为什么fast走两个节点,slow走一个节点,有环的话,一定会在环内相遇呢,而不是永远的错开呢?
首先第一点:fast指针一定先进入环中,如果fast指针和slow指针相遇的话,一定是在环中相遇,这是毋庸置疑的。
那么来看一下,为什么fast指针和slow指针一定会相遇呢?
可以画一个环,然后让fast指针在任意一个节点开始追赶slow指针。

这是因为fast是走两步,slow是走一步,其实相对于slow来说,fast是一个节点一个节点的靠近slow的,所以fast一定可以和slow重合。

/*** Definition for singly-linked list.* class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public boolean hasCycle(ListNode head) {ListNode fast = head;ListNode slow = head;// 空链表、单节点链表一定不会有环while (fast != null && fast.next != null) {fast = fast.next.next; // 快指针,一次移动两步slow = slow.next;      // 慢指针,一次移动一步// 不要比较value,对象可能是个空的if (fast == slow) {   // 快慢指针相遇,表明有环return true;}}return false; // 正常走到链表末尾,表明没有环}
}

时间复杂度: O(N),其中N是链表中的节点数。当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 NNN 轮。
空间复杂度: O(1)。我们只使用了两个指针的额外空间。

三、哈希表

最容易想到的方法是遍历所有节点,每次遍历到一个节点时,判断该节点此前是否被访问过。

具体地,我们可以使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可。

public class Solution {public boolean hasCycle(ListNode head) {Set<ListNode> seen = new HashSet<ListNode>();while (head != null) {if (!seen.add(head)) {return true;}head = head.next;}return false;}
}

时间复杂度: O(N),其中N是链表中的节点数。最坏情况下我们需要遍历每个节点一次。
空间复杂度: O(N),其中N是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。

四、数组与链表

作为线性表的两种存储方式 —— 链表和数组,这对相爱相杀的好基友有着各自的优缺点。接下来,我们梳理一下这两种方式。

数组,所有元素都连续的存储于一段内存中,且每个元素占用的内存大小相同。这使得数组具备了通过下标快速访问数据的能力。
但连续存储的缺点也很明显,增加容量,增删元素的成本很高,时间复杂度均为O(n)
增加数组容量需要先申请一块新的内存,然后复制原有的元素。如果需要的话,可能还要删除原先的内存。

删除元素时需要移动被删除元素之后的所有元素以保证所有元素是连续的。增加元素时需要移动指定位置及之后的所有元素,然后将新增元素插入到指定位置,如果容量不足的话还需要先进行扩容操作。
总结一下数组的优缺点:
优点: 可以根据偏移实现快速的随机读写。
缺点: 扩容,增删元素极慢。

链表,由若干个结点组成,每个结点包含数据域和指针域。结点结构如下图所示:
在这里插入图片描述

链表的一个结点一般来讲,链表中只会有一个结点的指针域为空,该结点为尾结点,其他结点的指针域都会存储一个结点的内存地址。链表中也只会有一个结点的内存地址没有存储在其他结点的指针域,该结点称为头结点。
在这里插入图片描述

内存中的链表链表的存储方式使得它可以高效的在指定位置插入与删除,时间复杂度均为O(1)
在结点p之后增加一个结点q总共分三步:
1、请一段内存用以存储q (可以使用内存池避免频繁申请和销毁内存)。
2、将p的指针域数据复制到q的指针域。
3、更新p的指针域为q的地址。
插入新元素

删除结点p之后的结点q总共分两步:
1、将q的指针域复制到p的指针域。
2、释放q结点的内存。
在这里插入图片描述

#include <bits/stdc++.h>using namespace std;//定义一个结点模板template<typename T>struct Node {T data;Node *next;Node() : next(nullptr) {}Node(const T &d) : data(d), next(nullptr) {}};//删除 p 结点后面的元素template<typename T>void Remove(Node<T> *p) {if (p == nullptr || p->next == nullptr) {return;}auto tmp = p->next->next;delete p->next;p->next = tmp;}//在 p 结点后面插入元素template<typename T>void Insert(Node<T> *p, const T &data) {auto tmp = new Node<T>(data);tmp->next = p->next;p->next = tmp;}//遍历链表template<typename T, typename V>void Walk(Node<T> *p, const V &vistor) {while(p != nullptr) {vistor(p);p = p->next;}}int main() {auto p = new Node<int>(1);Insert(p, 2);int sum = 0;Walk(p, [&sum](const Node<int> *p) -> void { sum += p->data; });cout << sum << endl;Remove(p);sum = 0;Walk(p, [&sum](const Node<int> *p) -> void { sum += p->data; });cout << sum << endl;return 0;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/617486.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构中的一棵树

一、树是什么&#xff1f; 有根有枝叶便是树&#xff01;根只有一个&#xff0c;枝叶可以有&#xff0c;也可以没有&#xff0c;可以有一个&#xff0c;也可以有很多。 就像这样&#xff1a; 嗯&#xff0c;应该是这样&#xff1a; 二、一些概念 1、高度 树有多高&#x…

MySQL之导入导出远程备份(详细讲解)

文章目录 一、Navicat导入导出二、mysqldump命令导入导出2.1导出2.2导入&#xff08;使用mysqldump导入 包含t_log表的整个数据库&#xff09; 三、LOAD DATA INFILE命令导入导出3.1设置;3.2导出3.3导入(使用单表数据导入load data infile的方式) 四、远程备份4.1导出4.2导入 一…

redis系列:01 数据类型及操作

redis的数据类型有哪些 string,list,set,sorted_set,hash 操作 sting: set name maliao get name exists name expire name 5 ttl name del name setex name 10 maliao 设置key和过期时间 setnx name maliao 当key不存在时才添加list&#xff1a; lpush letter a lpush le…

OpenCV-22高斯滤波

一、高斯函数的基础 要理解高斯滤波首先要直到什么是高斯函数&#xff0c;高斯函数是符合高斯分布的&#xff08;也叫正态分布&#xff09;的数据的概率密度函数。 高斯函数的特点是以x轴某一点&#xff08;这一点称为均值&#xff09;为对称轴&#xff0c;越靠近中心数据发生…

【Linux实用篇】Linux常用命令(1)

目录 1.1 Linux命令初体验 1.1.1 常用命令演示 1.1.2 Linux命令使用技巧 1.1.3 Linux命令格式 1.2 文件目录操作命令 1.2.1 ls 1.2.2 cd 1.2.3 cat 1.2.4 more 1.2.5 tail 1.2.6 mkdir 1.2.7 rmdir 1.2.8 rm 1.1 Linux命令初体验 1.1.1 常用命令演示 在这一部分中…

遥感影像-语义分割数据集:Landsat8云数据集详细介绍及训练样本处理流程

原始数据集详情 简介&#xff1a;该云数据集包括RGB三通道的高分辨率图像&#xff0c;在全球不同区域的分辨率15米。这些图像采集自Lansat8的五种主要土地覆盖类型&#xff0c;即水、植被、湿地、城市、冰雪和贫瘠土地。 KeyValue卫星类型landsat8覆盖区域未知场景水、植被、…

uniapp中按钮点击跳转页面失效,纠正错误(亲测可用)

不知道伙伴你的错误和我是否一致&#xff1f; 我当时为了点击跳转按钮发现跳转不了&#xff0c;如下错误提示&#xff1a; worker.js?libNameWAAccelerateWorker.js:1 [Deprecation] SharedArrayBuffer will require cross-origin isolation as of M92, around July 2021. S…

【Java SE语法篇】6.数组

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更新的动力❤️ 文章目录 1.数组的基本概念1.1 为什么使用数组&#xff1f;1.…

MATLAB - 四旋翼飞行器动力学方程

系列文章目录 前言 本例演示了如何使用 Symbolic Math Toolbox™&#xff08;符号数学工具箱&#xff09;推导四旋翼飞行器的连续时间非线性模型。具体来说&#xff0c;本例讨论了 getQuadrotorDynamicsAndJacobian 脚本&#xff0c;该脚本可生成四旋翼状态函数及其雅各布函数…

streamlit中文开发手册(详细版)

目录 一、安装与配置 1.1 安装 Streamlit 1.2 配置文件 1.3 运行Streamlit应用 二、streamlit显示数据 2.1 显示标题 2.2 显示文本 2.3 显示代码段 2.4 通用显示方法 2.5 显示表格 2.6 显示JSON 2.7 显示pyplot图表 2.8 显示地图 2.9 显示图像 2.10 显示视频 三…

2024年腾讯云新用户专属优惠活动及代金券活动汇总

腾讯云作为国内领先的云计算服务提供商&#xff0c;一直致力于为用户提供优质、高效的服务。为了更好地满足新用户的需求&#xff0c;腾讯云在2024年推出了一系列新用户专属优惠活动和代金券活动。本文将为大家详细介绍这些活动&#xff0c;帮助大家更好地了解和利用这些优惠。…

Gogs - 管理协作者

Gogs - 管理协作者 References 仓库设置 管理协作者 权限设置 References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

Android 13(T) - Media框架(2)- libmedia

这一节学习有两个目标&#xff1a; 1 熟悉Android Media API的源码路径与调用层次 2 从MediaPlayer的创建与销毁了解与native的串接 1、源码路径 Media相关的API位于&#xff1a;frameworks/base/media/java/android/media&#xff0c;里面提供有MediaPlayer MediaCodecList M…

代币合约 ERC20 Token接口

代币合约 在以太坊上发布代币就要遵守以太坊的规则&#xff0c;那么以太坊有什么规则呢?以太坊的精髓就是利用代码规定如何运作&#xff0c;由于在以太坊上发布智能合约是不能修改和删除的&#xff0c;所以智能合约一旦发布&#xff0c;就意味着永久有效&#xff0c;不可篡改…

如何解决NAND系统性能问题?-- NAND接口分类

三、NAND接口 NAND闪存接口是连接主机控制器与NAND存储芯片的通信桥梁&#xff0c;负责命令、地址和数据的传输。典型的NAND闪存接口包括一组I/O线&#xff08;通常为8条或更多&#xff09;用于数据传输&#xff0c;以及若干控制信号线。 基本接口信号&#xff1a; Chip Enable…

吲哚及其衍生物:连接肠道炎症与神经健康的隐秘调节剂

谷禾健康 你敢相信吗&#xff1f;从粪便中提取出具有强烈粪臭味的物质&#xff0c;当用酒精稀释上千倍后&#xff0c;脱胎换骨变成了一种香味。这就是一种吲哚衍生物——3-甲基吲哚(又名粪臭素) 吲哚&#xff0c;是所有花香类原精的关键成分&#xff0c;这种物质在低剂量1-3%浓…

如何利用RPA做UI自动化测试对传统自动化的降维打击

写在前面 RPA软件一开始的目的并不是自动化测试&#xff0c;而是要把电脑上面几十个、上百个常用的软件&#xff0c;通过机器人流程自动化来打通&#xff0c;通过一个软件来控制几十个、上百个软件。而这个过程&#xff0c;其实覆盖了软件自动化测试。 所谓降维打击&#xff0c…

【第二课课后作业】书生·浦语大模型实战营-轻松玩转书生·浦语大模型趣味Demo

目录 轻松玩转书生浦语大模型趣味Demo课后作业1. 基础作业1.1 使用 InternLM-Chat-7B 模型生成 300 字的小故事&#xff1a;1.2 熟悉 hugging face 下载功能&#xff0c;使用 huggingface_hub python 包&#xff0c;下载 InternLM-20B 的 config.json 文件到本地 2. 进阶作业2.…

强化学习应用(三):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法&#xff0c;用于解决基于马尔可夫决策过程&#xff08;MDP&#xff09;的问题。它通过学习一个价值函数来指导智能体在环境中做出决策&#xff0c;以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…

【Docker】数据卷挂载以及宿主机目录挂载的使用

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《Docker实战》。&#x1f3af;&#x1f3af; &…