本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github,删减了源码中部分内容,满足个人科研需求。
本系列文章主要以YOLOv5为例完成算法的实现,后续修改、增加相关模块即可实现其他版本的YOLO算法。
文章地址:
YOLOv5算法实现(一):算法框架概述
YOLOv5算法实现(二):模型加载
YOLOv5算法实现(三):数据集加载
YOLOv5算法实现(四):损失计算
YOLOv5算法实现(五):预测结果后处理
YOLOv5算法实现(六):评价指标及实现
YOLOv5算法实现(七):模型训练
YOLOv5算法实现(八):模型验证
YOLOv5算法实现(九):模型预测(编辑中…)
本文目录
- 1 引言
- 2 超参数文件
- 3 模型训练(train.py)
1 引言
本篇文章综合之前文章中的功能,实现模型的训练。模型训练的逻辑如图1所示。
2 超参数文件
YOLOv5中超参数主要包括学习率、优化器、置信度以及数据增强,源码中某一超参数文件及各参数含义如下所示:
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for VOC training# 学习率
lr0: 0.00334 # 初始学习率
lrf: 0.15135 # 最终学习率下降比例(lr0 * lrf)
# 优化器(SGD、Adam、AdamW)
momentum: 0.74832 # SGD momentum/Adam beta1
weight_decay: 0.00025 # optimizer weight decay 5e-4 ,权重衰变系数(防止过拟合)
# 热身训练(Warmup)
warmup_epochs: 3.3835 # 学习率热身epoch
warmup_momentum: 0.59462 # 学习率热身初始动量
warmup_bias_lr: 0.18657 # 学习率热身偏置学习率
# 损失增益
box: 0.02 # box loss gain
cls: 0.21638 # cls loss gain
cls_pw: 0.5 # cls BCELoss positive_weight
obj: 0.51728 # obj loss gain (scale with pixels)
obj_pw: 0.67198 # obj BCELoss positive_weight
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
# 正样本匹配阈值
iou_t: 0.2 # IoU training threshold
anchor_t: 3.3744 # anchor-multiple threshold
# 数据增强
## HSV色彩空间增强
hsv_h: 0.01041
hsv_s: 0.54703
hsv_v: 0.27739
## 仿射变换
degrees: 0.0 #图像旋转
translate: 0.04591 #图像平移
scale: 0.75544 #图像仿射变换的缩放比例
shear: 0.0 #设置裁剪的仿射矩阵系数
3 模型训练(train.py)
def train(hyp):# ----------------------------------------------------------------------------------# hyp超参数解析# ----------------------------------------------------------------------------------# 训练设备device = torch.device(opt.device if torch.cuda.is_available() else "cpu")print("Using {} device training.".format(device.type))# 权重保存文件wdir = "weights" + os.sep # weights dir# 损失和学习率记录txt, 损失和学习率变化曲线, 权重文件保存路径results_file, save_file_path, save_path \= opt.results_file, opt.save_file_path, opt.save_path# 模型结构文件cfg = opt.yaml# data文件路径, 其中存储了训练和验证数据集的路径data = opt.data# 训练批次epochs = opt.epochsbatch_size = opt.batch_size# 初始化权重路径weights = opt.weights # initial training weights# 训练和测试的图片大小imgsz_train = opt.img_sizeimgsz_test = opt.img_size# 图像要设置成32的倍数gs = 32 # (pixels) grid sizeassert math.fmod(imgsz_test, gs) == 0, "--img-size %g must be a %g-multiple" % (imgsz_test, gs)# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------# 数据字典 "classes": 类别数, "train":训练数据集路径 "valid":验证数据集路径 "names": 类别名data_dict = parse_data_cfg(data)train_path = data_dict['train']val_path = data_dict['valid']# 类别数nc = opt.nc# Remove previous resultsfor f in glob.glob(results_file):os.remove(f)# ----------------------------------------------------------------------------------# 模型初始化(加载预训练权重)# ----------------------------------------------------------------------------------# 初始化模型model = Model(cfg=cfg, ch=3, nc=nc).to(device)# 开始训练的epochstart_epoch = 0best_map = 0pretrain = Falseif weights.endswith(".pt") or weights.endswith(".pth"):pretrain = Trueckpt = torch.load(weights, map_location=device)# load modeltry:ckpt["model"] = {k: v for k, v in ckpt["model"].items() if model.state_dict()[k].numel() == v.numel()}model.load_state_dict(ckpt["model"], strict=False)except KeyError as e:s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \"See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)raise KeyError(s) from e# load resultsif ckpt.get("training_results") is not None:with open(results_file, "w") as file:file.write(ckpt["training_results"]) # write results.txt# 加载最好的mapif "best_map" in ckpt.keys():best_map = ckpt['best_map']# epochsstart_epoch = ckpt["epoch"] + 1if epochs < start_epoch:print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %(opt.weights, ckpt['epoch'], epochs))epochs += ckpt['epoch'] # finetune additional epochsdel ckpthyp['lr0'] = hyp['lr0'] * hyp['lrf']print(colorstr('Pretrain') + ': Successful load pretrained weights.')# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------# 定义优化器和学习率策略# ----------------------------------------------------------------------------------nbs = 64 # 训练多少图片进行一次反向传播accumulate = max(round(nbs / batch_size), 1) # accumulate n times before optimizer update (bs 64)hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay# 定义优化器optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])# Schedulerif opt.cos_lr:lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']else:lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linearscheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)scheduler.last_epoch = start_epoch # 指定从哪个epoch开始# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------# 加载数据集# ----------------------------------------------------------------------------------train_dataset = LoadImagesAndLabels(train_path, imgsz_train, batch_size,augment=True,hyp=hyp, # augmentation hyperparametersrect=False, # rectangular trainingcache_images=opt.cache_images,)# dataloadernum_workers = 0 # number of workerstrain_dataloader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,num_workers=num_workers,# Shuffle=True unless rectangular training is usedshuffle=not opt.rect,pin_memory=True,collate_fn=train_dataset.collate_fn)# 当需要根据map保存最好的权值时, 加载验证数据集val_dataset = LoadImagesAndLabels(val_path, imgsz_test, batch_size,hyp=hyp,rect=True,cache_images=opt.cache_images)val_dataloader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,num_workers=num_workers,pin_memory=True,collate_fn=val_dataset.collate_fn)# train_dataset.labels (1203, ) 1203张图片中的所有标签(nt,5)# np.concatenate 在维度0上对所有标签进行拼接 (1880, 5)labels = np.concatenate(train_dataset.labels, 0)mlc = int(labels[:, 0].max()) # 最大的类别标签assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------# 模型参数定义# ----------------------------------------------------------------------------------nl = model.model[-1].nl # 输出特征图数量hyp['box'] *= 3 / nl # scale to layershyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layershyp['obj'] *= (imgsz_test / 640) ** 2 * 3 / nl # scale to image size and layershyp['label_smoothing'] = opt.label_smoothingmodel.nc = nc # attach number of classes to modelmodel.hyp = hyp # attach hyperparameters to model# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------compute_loss = ComputeLoss(model)# ----------------------------------------------------------------------------------# 开始训练# ----------------------------------------------------------------------------------nb = len(train_dataloader) # batches的数量, dataloader已经将data安装batch_size进行了打包nw = max(round(hyp['warmup_epochs'] * nb), 100) # 热身训练的迭代次数, max(3 epochs, 100 iterations)last_opt_step = -1 # 最后一次更新参数的步数train_loss, train_box_loss, train_obj_loss, train_cls_loss = [], [], [], []learning_rate = []if opt.savebest:best_map = ComputeAP(model, val_dataloader, device=device)print(f"{colorstr('Initialize best_map')}: mAP@0.50 = {best_map: .5f}")print(f'Image sizes {imgsz_train} train, {imgsz_test} val\n'f'Using {num_workers} dataloader workers\n'f'Starting training for {epochs} epochs...')for epoch in range(start_epoch, epochs):model.train()# 训练过程中的信息打印metric_logger = utils.MetricLogger(delimiter=" ")metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))header = 'Epoch: [{}]'.format(epoch)# 当前训练批次的平均损失mloss = torch.zeros(4, device=device)now_lr = 0.optimizer.zero_grad()# imgs: [batch_size, 3, img_size, img_size]# targets: [num_obj, 6] , that number 6 means -> (img_index, obj_index, x, y, w, h)# 其中(x, y, w, h)绝对作了缩放处理后的相对坐标# paths: list of img path(文件路径)for i, (imgs, targets, paths, _, _) in enumerate(metric_logger.log_every(train_dataloader, 50, header)):ni = i + nb * epoch # number integrated batches (since train start)imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0# ----------------------------------------------------------------------------------# Warmup 热身训练# ----------------------------------------------------------------------------------if ni <= nw:xi = [0, nw] # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])# ----------------------------------------------------------------------------------# ----------------------------------------------------------------------------------# 前向传播pred = model(imgs)# 损失计算loss_dict = compute_loss(pred, targets.to(device))losses = sum(loss for loss in loss_dict.values())loss_items = torch.cat((loss_dict["box_loss"],loss_dict["obj_loss"],loss_dict["class_loss"],losses)).detach()mloss = (mloss * i + loss_items) / (i + 1) # update mean losses# 反向传播losses *= batch_sizelosses.backward()# 每训练accumulate次进行参数更新if ni - last_opt_step >= accumulate:optimizer.step()optimizer.zero_grad()metric_logger.update(loss=losses, **loss_dict)now_lr = optimizer.param_groups[0]["lr"]metric_logger.update(lr=now_lr)# end batch ----------------------------------------------------------------------scheduler.step()train_loss.append(mloss.tolist()[-1])learning_rate.append(now_lr)result_mAP = ComputeAP(model, val_dataloader, device=device)voc_mAP = result_mAP[1] # @0.50# write into txtwith open(results_file, "a") as f:# box_loss, obj_clss, cls_loss, train_loss, lrresult_info = [str(round(i, 4)) for i in [mloss.tolist()[0]]] + \[str(round(i, 4)) for i in [mloss.tolist()[1]]] + \[str(round(i, 4)) for i in [mloss.tolist()[2]]] + \[str(round(i, 4)) for i in [mloss.tolist()[-1]]] + \[str(round(now_lr, 6))] + [str(round(voc_mAP, 6))]txt = "epoch:{} {}".format(epoch, ' '.join(result_info))f.write(txt + "\n")if opt.savebest:if voc_mAP > best_map:print(f"{colorstr('Save best_map Weight')}: update mAP@0.50 from {best_map: .5f} to {voc_mAP: .5f}")best_map = voc_mAPwith open(results_file, 'r') as f:save_files = {'model': model.state_dict(),'optimizer': optimizer.state_dict(),'training_results': f.read(),'epoch': epoch,'best_map': best_map}torch.save(save_files, save_path.format('best_map'))else:if (epoch + 1) % 20 == 0 or epoch == epochs - 1:with open(results_file, 'r') as f:save_files = {'model': model.state_dict(),'training_results': f.read(),'epoch': epoch}torch.save(save_files, save_path.format(epoch))if __name__ == '__main__':parser = argparse.ArgumentParser()# -----------------------------------------file = "yolov5s"weight_file = f"weights/{file}" # 权重存储文件result_file = f'results/{file}' # 训练损失、mAP等保存文件if not os.path.exists(weight_file):os.makedirs(weight_file)if not os.path.exists(result_file):os.makedirs(result_file)# -----------------------------------------parser.add_argument('--epochs', type=int, default=300)parser.add_argument('--batch-size', type=int, default=4)parser.add_argument('--nc', type=int, default=3)yaml_path = f'cfg/models/{file}.yaml'parser.add_argument('--yaml', type=str, default=yaml_path, help="model.yaml path")parser.add_argument('--data', type=str, default='data/my_data.data', help='*.data path')parser.add_argument('--hyp', type=str, default='cfg/hyps/hyp.scratch-med.yaml', help='hyperparameters path')parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')parser.add_argument('--cos-lr', type=bool, default=True, help='cosine LR scheduler')parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')parser.add_argument('--img-size', type=int, default=640, help='test size')parser.add_argument('--rect', action='store_true', help='rectangular training')parser.add_argument('--savebest', type=bool, default=False, help='only save best checkpoint')# 当内存足够时, 设置为True, 将数据集加载到内存中, 在训练时不用从磁盘中读取图片可以加快训练速度parser.add_argument('--cache-images', default=False, help='cache images for faster training')# 预训练权重weight = f'weights/{file}/{file}.pt'parser.add_argument('--weights', type=str, default=weight if os.path.exists(weight) else "", help='initial weights path')parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')# 结果保存路径time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")results_file = f"./results/{file}/results{time}.txt"parser.add_argument("--results_file", default=results_file, help="save results files")save_file_path = f'./results/{file}/loss_and_lr{time}.png'parser.add_argument('--save_file_path', default=save_file_path, help="save loss and lr fig")save_path = f"./weights/{file}/{file}-" + "{}.pt"parser.add_argument('--save_path', default=save_path, help="weight save path")opt = parser.parse_args()# 检查文件是否存在opt.cfg = check_file(opt.yaml)opt.data = check_file(opt.data)opt.hyp = check_file(opt.hyp)print(opt)with open(opt.hyp) as f:hyp = yaml.load(f, Loader=yaml.FullLoader)train(hyp)