SPDK中常用的性能测试工具

本文主要介绍磁盘性能评估的方法,针对用户态驱动Kernel与SPDK中各种IO测试工具的使用方法做出总结。其中fio是一个常用的IO测试工具,可以运行在Linux、Windows等多种系统之上,可以用来测试本地磁盘、网络存储等的性能。为了和SPDK的fio工具相区别,我们称之为内核fio。

SPDK有自己的IO测试工具,包括fio_plugin,perf和bdevperf。SPDK采用异步I/O(Asynchronous I/O)加轮询(Polling)的工作模式,通常与Kernel的异步I/O作为对比。在此,主要介绍通过使用fio评估Kernel异步I/O,SPDK的三种IO测试工具。

一 . FIO准备工作

在测试内核fio和SPDK fio_plugin工具之前,我们先准备好环境。

1. 编译fio

首先,下载fio源码,建议至少切换到3.3及以上版本。

git clone https : //github . com/axboe/fio
cd fio && git checkout fio-3.3
make

2. 编译SPDK

下载最新的SPDK源码。然后,运行SPDK configure脚本以启用fio(将其指向fio代码库的根)。

git clone https : //github . com/spdk/spdk
cd spdk
git submodule update --init
./configure--with-fio=/path/to/fio/repo <other configuration options>
(例如:./configure --with-fio=/usr/src/fio)
make 

当使用参数--with-fio编译时,我们会发现在<spdk_repo>/build/fio目录会有下面两个文件,这就是fio_plugin的可执行程序。

二. 内核fio工具测试磁盘性能

典型的fio工作过程:

1)写一个job文件来描述要访真的io负载。一个job文件可以控制产生任意数目的线程和文件。典型的job文件有一个global段(定义共享参数),一个或多个job段(描述具体要产生的job)。

2)运行时,fio从文件读这些参数,做处理,并根据这些参数描述,启动这些线程/进程。

运行fio:

# fio job_file

它会根据job_file的内容来运行。我们可以在命令行中指定多个job file,fio串行化运行这些文件。

Job文件格式:

job file格式采用经典的ini文件,[]中的值表示job name,可以采用任意的ASCII字符。

IO引擎:

ioengine=str

定义job向文件发起IO的方式。使用I/O引擎就是使用某些函数,以某些特定方式来访问存储,Linux可以使用 libaio,sync,psync等。这里只介绍libaio的例子,以用作和下文SPDK的fio_plugin做对比。

libaio,即异步I/O的引擎。这时通常,I/O请求会发送到相应的队列中,等待被处理,因此队列深度将会影响磁盘性能。所以在测试异步I/O的时候,根据磁盘的特性指定相应的队列深度(iodepth)。

一个典型的fio配置文件,nvme_bdev_job.fio:

[global]
ioengine=libaio
thread=1
group_reporting=1
direct=1
norandommap=1
cpumask=1
bs=4k
rw=randread
iodepth=256
time_based=1
ramp_time=0
runtime=30
[job]
filename=/dev/nvme0n1

部分参数解释

ioengine:指定I/O引擎,在这里测试Kernel的异步I/O,因此指定I/O引擎为libaio;

direct:指定direct模式O_DIRECT,I/O会绕过系统的page buffer;

rw:读写模式,这里指定randrw表示混合随机读写;

rwmixread:混合随机读写模式下read请求所占比例;

thread:指定使用线程模式。由于spdk fio_plugin只支持线程模式,因此与Kernel对比时,通常都统一指定线模式来对比;

norandommap:指定I/O时,每次都获取一个新的随机offset,防止额外的CPU使用消耗;

time_based:指定采用时间模式;

runtime:测试时长,单位是秒;

ramp_time:统计性能之前所运行的时间,为了防止没有进行稳态而造成的性能虚高带来的影响,单位是秒;

bs:I/O块大小;

iodepth:队列深度;

numjobs:worker的个数;

filename:指定测试的对象。

运行fio(带配置文件)举例:

[root@server spdk]# fio nvme_bdev_job.fio

另一种用法,不使用fio文件,直接使用参数

# fio -filename=/dev/nvme0n1 -direct=1 -iodepth 1 -thread -rw=randread \
-ioengine=libaio -bs=4k -size=1G -runtime=10 -group_reporting -name=rand_read_4k

三. SPDK的fio_plugin工具

通常,在内核模式下,使用fio工具来测试设备在实际的工作负载下所能承受的最大压力。用户可启动多个线程,对设备来模拟各种IO操作,使用filename指定所被测试的设备。然而,在SPDK用户态模式情况下,SPDK在使用前会unbind内核驱动,直接通过PCI地址来识别设备,因此用户在系统上无法直接看到设备。为此,SPDK推出fio_plugin与SPDK深度集成,用户可以通过指定设备的PCI地址,来决定所要进行压力测试的设备。同时,在fio_plugin内部,采用SPDK用户态设备驱动提供的轮询和异步的方式进行I/O操作,I/O通过SPDK直接写入磁盘。

SPDK提供两种形态的fio_plugin:

  • 基于裸盘NVMe的fio_plugin,其特点为I/O通过SPDK用户态驱动直接访问裸盘,常用于评估SPDK用户态驱动在裸盘上的性能。
  • 基于bdev的fio_plugin,其特点为I/O测试基于SPDK块设备bdev之上,所有I/O经由块设备层bdev,再传送至裸盘设备。常用于评估SPDK块设备bdev的性能。

1. 基于NVMe的fio_plugin

前提条件

按照第一章节步骤,下载好内核fio和SPDK代码并编译。

测试方法

a. 使用fio_plugin测试裸盘,需要引入fio_plugin路径,因此在运行fio时,在fio命令之前加如下参数:

export LD_PRELOAD(只需要一遍)

LD_PRELOAD=<path to spdk repo>/build/fio/spdk_nvme

(如果解除,用unset LD_PRELOAD)

也可以export LD_PRELOAD=spdk/examples/… 写成一句

b. 其次,需要在fio配置文件中设定ioengine为spdk。

ioengine=spdk

c. 运行fio_plugin时,同时要通过额外的参数'--filename'指定SPDK能够识别的设备地址信息。

但是,NVMe的fio_plugin配置文件里不需要指定spdk_json_conf。

通常,NVMe的fio_plugin支持两种模式下的测试,

一是本地的NVMe设备,即NVMe over PCIe;

二是远端的NVMe设备,即NVMe over Fabrics。

运行,NVMe over PCIe:

[root@server spdk]# LD_PRELOAD=build/fio/spdk_nvme /usr/src/fio/fio \
spdk_nvme1.fio '--filename=trtype=PCIe traddr=0000.06.00.0 ns=1'

在initiator端执行NVMe over Fabrics(transport=RDMA):

[root@server2 spdk]# LD_PRELOAD=build/fio/spdk_nvme \
/usr/src/fio/fio spdk_nvme1.fio \
'--filename=trtype=RDMA adrfam=IPv4 traddr=192.168.100.8 trsvcid=4420 ns=1'

或者,在initiator端执行NVMe over Fabrics(transport=TCP):

[root@server2 spdk]# LD_PRELOAD=build/fio/spdk_nvme \
/usr/src/fio/fio spdk_nvme1.fio \
'--filename=trtype=TCP adrfam=IPv4 traddr=192.168.100.8 trsvcid=4420 ns=1'

配置文件spdk_nvme1.fio如下所示:

[global]
ioengine=spdk (前提./configure --with-fio=/usr/src/fio,如果是=libaio则不需要--with-fio)
thread=1
group_reporting=1
direct=1
verify=0
time_based=1
ramp_time=0
runtime=20
iodepth=128
rw=randrw
bs=4k
numjobs=1
[job]

执行NVMe over Fabrics(RDMA/TCP)的前提条件是target端要启动nvmf进程,

[root@server1 spdk]#./build/bin/nvmf_tgt --json spdk_tgt_nvmf.json

spdk_tgt_nvmf.json(以transport=TCP为例)文件如下:

{"subsystems": [{"subsystem": "bdev","config": [{"method": "bdev_nvme_attach_controller","params": {"name": "Nvme0","trtype": "PCIe","traddr": "0000:81:00.0","prchk_reftag": false,"prchk_guard": false}}]},{"subsystem": "nvmf","config": [{"method": "nvmf_set_config","params": {"acceptor_poll_rate": 10000,"admin_cmd_passthru": {"identify_ctrlr": false}}},{"method": "nvmf_set_max_subsystems","params": {"max_subsystems": 1024}},{"method": "nvmf_create_transport","params": {"trtype": "TCP","max_queue_depth": 128,"max_io_qpairs_per_ctrlr": 127,"in_capsule_data_size": 4096,"max_io_size": 131072,"io_unit_size": 24576,"max_aq_depth": 128,"max_srq_depth": 4096,"abort_timeout_sec": 1}},{"method": "nvmf_create_subsystem","params": {"nqn": "nqn.2018-09.io.spdk:cnode1","allow_any_host": true,"serial_number": "SPDK001","model_number": "SPDK bdev Controller","max_namespaces": 8}},{"method": "nvmf_subsystem_add_listener","params": {"nqn": "nqn.2018-09.io.spdk:cnode1","listen_address": {"trtype": "TCP","adrfam": "IPv4","traddr": "192.168.100.8","trsvcid": "4420"}}},{"method": "nvmf_subsystem_add_ns","params": {"nqn": "nqn.2018-09.io.spdk:cnode1","namespace": {"nsid": 1,"bdev_name": "Nvme0n1","uuid": "51581506-537f-4236-9bc1-d926c966d09b"}}}]}]
}

目前SPDK只支持Json格式配置文件,以前习惯使用INI格式的用户,可以使用SPDK的自动转换工具,把INI格式变为Json格式。

[root@server spdk]# ./scripts/config_converter.py < config.ini \
> config_converter.json

a. 对于使用1个core,测试多块盘的情况,通常只需要设定numjob为1,同时在fio命令通过多个filename参数来指定多块要测试的盘(多个filename参数之间用空格相隔即可),例如同时测试三块盘:

[root@server spdk]# LD_PRELOAD=build/fio/spdk_nvme \
/usr/src/fio/fio spdk_nvme1.fio \
'--filename=trtype=PCIe traddr=0000.06.00.0 ns=1' \
'--filename=trtype=PCIe traddr=0000.07.00.0 ns=1' \
'--filename=trtype=PCIe traddr=0000.08.00.0 ns=1'

b. 对于使用fio_plugin作为新的ioengine而引入的新的fio参数说明,可以通过以下命令查看:

[root@server spdk]# LD_PRELOAD=build/fio/spdk_nvme /usr/src/fio/fio --enghelp=spdk

表3.1 nvme fio_plugin的格式

c. 此外,可以通过直接在ioengine中指定fio_plugin的路径,而无须每次运行fio都动态加载LD_PRELOAD。

ioengine=<path to spdk repo>/build/fio/spdk_nvme

只需运行:

[root@server spdk]# /usr/src/fio/fio spdk_nvme2.fio \
'--filename=trtype=PCIe traddr=0000.06.00.0 ns=1'

配置文件spdk_nvme2.fio如下所示:

[global]
ioengine=build/fio/spdk_nvme
thread=1
group_reporting=1
direct=1
verify=0
time_based=1
ramp_time=0
runtime=20
iodepth=128
rw=randrw
bs=4k
numjobs=1
[job]

也可以把filename写到配置文件里,

[job]
filename=trtype=PCIe traddr=0000.06.00.0 ns=1

这时只需运行,

[root@server spdk]# /usr/src/fio/fio spdk_nvme2.fio

2. 基于bdev的fio_plugin

基于bdev的fio_plugin是将I/O在SPDK块设备bdev之上进行发送。而基于裸盘的fio_plugin,I/O是直接到裸盘上进行处理。两者最大的差别在于I/O是否经过bdev这一层。因此,基于bdev的fio_plugin能够很好的评估SPDK块设备层bdev的性能。其编译安装与裸盘的fio_plugin完全相同。

测试方法

a. 使用fio_plugin测试bdev性能,需要指定bdev fio_plugin的路径,因此在运行fio时,在fio命令前加如下参数

LD_PRELOAD=<path to spdk repo>/build/fio/spdk_bdev

b. 需要在fio配置文件中设定ioengine为spdk_bdev。

ioengine=<path to spdk>/build/fio/spdk_bdev

c. 与nvme的fio_plugin相比,fio配置文件必须包含一个新参数spdk_json_conf,需要在配置文件中指定SPDK启动配置文件。如下所示:

spdk_json_conf=./examples/bdev/fio_plugin/bdev.json

bdev.json中指定了所用的bdev信息,以创建malloc为例:

{"subsystems": [{"subsystem": "bdev","config": [{"params": {"block_size": 512,"num_blocks": 262144,"name": "Malloc0"},"method": "bdev_malloc_create"}]}

d. 运行fio的时候,通过'--filename'直接指定所要测试的bdev名称即可,运行:

[root@server spdk]# LD_PRELOAD=build/fio/spdk_bdev /usr/src/fio/fio \
spdk_bdev1.fio '--filename=Malloc0'

spdk_bdev1.fio如下所示:

[global]
ioengine=spdk_bdev
spdk_json_conf=./examples/bdev/fio_plugin/bdev.json
thread=1
group_reporting=1
direct=1
verify=0
time_based=1
ramp_time=0
runtime=2
iodepth=128
rw=randrw
bs=4k
numjobs=1
[test]

也可以把filename写进配置文件里,

[test]
filename=Malloc0

这时只需运行,

[root@server spdk]# LD_PRELOAD=build/fio/spdk_bdev /usr/src/fio/fio spdk_bdev1.fio

其他说明

a. 使用基于bdev的fio_plugin测试多个设备时候,需要在spdk运行配置文件中写入相应的bdev配置信息,其次在fio运行时,指定多个filename参数即可,多个filename之间用空格相隔。例如同时测两个设备Malloc0与Nvme0n1,如下所示:

[root@server spdk]# LD_PRELOAD=build/fio/spdk_bdev /usr/src/fio/fio \
spdk_bdev1.fio '--filename=Nvme0n1' '--filename=Malloc0'

b. 同理,若查看基于bdev的fio_plugin相关参数说明,可以通过如下命令:

[root@server spdk]# LD_PRELOAD=build/fio/spdk_bdev /usr/src/fio/fio \
--enghelp=spdk_bdev

c. 此外,可以通过直接在ioengine中指定fio_plugin的路径,而无须每次运行fio都动态加载LD_PRELOAD。即:

fio配置文件中添加修改

ioengine=<path to spdk repo>/build/fio/spdk_bdev

运行:

[root@server spdk]# /usr/src/fio/fio examples/bdev/fio_plugin/example_config.fio \ '--filename=Malloc0'

即可测试。

表3.2 bdev fio_plugin的格式

d. 测试两个bdev的例子,先通过json文件创建两个malloc块设备。

bdev2.json示例如下:

{"subsystems": [{"subsystem": "bdev", "config": [{"method": "bdev_malloc_create", "params": {"name": "Malloc0", "num_blocks": 102400, "block_size": 512}}, {"method": "bdev_malloc_create", "params": {"name": "Malloc1", "num_blocks": 102400, "block_size": 512}}]}]
}

运行

[root@server spdk]# /usr/src/fio/fio spdk_bdev2.fio 

spdk_bdev2.fio如下所示:

[global]
ioengine=build/fio/spdk_bdev
spdk_json_conf=./examples/bdev/fio_plugin/bdev2.json
thread=1
group_reporting=1
direct=1
verify=0
time_based=1
ramp_time=0
runtime=2
iodepth=128
rw=randrw
bs=4k
numjobs=1
[test1]
filename=Malloc0
[test2]
filename=Malloc1

也可以写成:

[test]
filename=Malloc0:Malloc1

上面的例子是测试本地的bdev设备,fio_plugin也可以测试远端的bdev设备。先在target端启动nvmf进程,

[root@server1 spdk]# ./build/bin/nvmf_tgt --json spdk_tgt_nvmf.json

接着在initiator端运行fio_plugin,

[root@server2 spdk]# LD_PRELOAD=build/fio/spdk_bdev \
/usr/src/fio/fio spdk_bdev3.fio

spdk_bdev3.fio如下所示:

[global]
ioengine=spdk_bdev
spdk_json_conf=./examples/bdev/fio_plugin/nvmf_bdev.json
thread=1
group_reporting=1
direct=1
verify=0
time_based=1
ramp_time=0
runtime=10
iodepth=128
rw=randrw
bs=4k
numjobs=1
[test]
filename=Nvme0n1

nvmf_bdev.json如下所示:

{"subsystems": [{"subsystem": "bdev","config": [{"params": {"name": "Nvme0","trtype": "rdma","traddr": "192.168.100.8","adrfam": "ipv4","trsvcid": "4420","subnqn": "nqn.2018-09.io.spdk:cnode1"},"method": "bdev_nvme_attach_controller"}]}]
}

上面是RDMA的例子,TCP的也是一样,只需把"trtype"设为"tcp"。

3. NVMe/bdev fio_plugin的比较

测试裸盘块设备,使用NVMe fio_plugin。在bdev这一层测试块设备,使用bdev fio_plugin,这个区别体现在配置文件里。

[job] 这是nvme层的写法,spdk_nvme使用

filename=trtype=PCIe traddr=0000.06.00.0 ns=1

[job1] 这是bdev层的写法,spdk_bdev使用

filename=/dev/nvme0n1

[job2]

filename=/dev/nvme1n1

[job3] 多个bdev的写法

filename=Null0:Null1:Null2:Null3:Null4:Null5:Null6:Null7:Null8:Null9

表3.3 NVMe/bdev fio_plugin的比较

四. SPDK的perf工具

1. 基于NVMe的perf工具

SPDK提供自己的性能测试工具perf。SPDK的perf与通常Linux系统中的perf工具有所不同,SPDK中的perf主要是用于对设备做压力测试,来评估其性能的工具。perf相比于fio_plugin更加灵活,可以直接配置core mask来指定进行I/O操作的CPU核。SPDK通过使用CPU的亲和性,将线程和CPU核做绑定,每个线程对应一个CPU核。在启动perf时,可通过core mask指定所用的CPU核,在所指定的每个CPU核上,都会为之注册一个worker_thread进行I/O操作。每个worker_thread都会调用SPDK所提供的I/O操作接口,通过异步的方式向底层的裸盘发送读写命令。

成功编译SPDK后,可在build/examples/目录下找到perf工具的可执行文件。Perf命令参数如下所示:

perf 
-c <core mask for I/O submission/completion> 
-q <io depth> 
-t <time in seconds> 
-w <io pattern type: write|read|randread|randwrite> 
-s <DPDK huge memory size in MB> 
-o <io size in bytes> 
-r <transport ID for local PCIe NVMe or NVMeoF>

perf支持本地的NVMe设备,同时也支持远端的NVMeoF的设备。使用范例如下:

NVMe over PCIe:
[root@server spdk]#./build/examples/perf -q 32 -s 1024 -w randwrite -t 1200 \
-c 0xF -o 4096 -r 'trtype:PCIe traddr:0000:06:00.0'
NVMe over Fabrics(transport=RDMA/TCP):
[root@server2 spdk]#./build/examples/perf -q 32 -s 1024 -w randwrite -t 1200 \
-c 0xF -o 4096 -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420'

对于同时测试多块盘,只需要添加-r并指定设备地址即可,例如一个core测试三块盘:

[root@server spdk]#./build/examples/perf -q 32 -s 1024 -w randwrite -t 1200 \ 
-c 0x1 -o 4096 \
-r 'trtype:PCIe traddr:0000:06:00.0' \
-r 'trtype:PCIe traddr:0000:07:00.0' \
-r 'trtype:PCIe traddr:0000:08:00.0'

2. perf评估Linux异步I/O(AIO)

使用方式与测试spdk driver相同,只需要在perf命令后添加设备名称即可。使用范例如下:

[root@server spdk]#./build/examples/perf -q 32 -s 1024 -w randwrite -t 1200 \
-c 0xF -o 4096 /dev/nvme0n1
(./scripts/setup.sh reset后才能看到/dev/nvme0n1)

相对于fio_plugin,perf有以下优势:

a. 可以通过core mask灵活指定CPU核。

b. 如果使用单个线程来测试多块盘性能的时候,fio_plugin的所得到的性能与perf所的到的性能有很大的差距。这是由于fio软件架构的问题,所以不适用于单个线程来操作多块盘。因此在评估单个线程(单核)的能力的时候,一般选用perf作为测试工具。若为多个线程对应操作多块盘,则无需顾虑。在这种情况下,fio_plugin与perf结果无差异。

3. 基于bdev的perf工具bdevperf

成功编译SPDK后,可在test/bdev//目录下找到bdevperf工具的可执行文件。命令参数如下:

--json <config> 
-q <io depth> 
-t <time in seconds> 
-w <io pattern type: write|read|randread|randwrite> 
-s <memory size in MB for DPDK> 
-o < size in bytes> 
-m <core mask for DPDK>

其中,--json是指定配置文件,需要测试的bdev设备都在配置文件中指定。下面给出3个具体的例子。

例1: bdevperf最基本的用法。

若需要测试本地的两块malloc设备,则bdevperf启动参数示例如下:

[root@server spdk]#./test/bdev/bdevperf/bdevperf -q 32 -s 1024 -w randwrite \
-t 60 -o 4096 -m 0xF --json bdev2.json

如果要测试远端块设备,请替换配置文件,类似3.1章节的spdk_tgt_nvmf.json。

例2: 实时监控I/O的刷新。

-z 参数等待RPC命令启动bdevperf,-S参数是显示性能数据的刷新频率。

[root@server spdk]# ./test/bdev/bdevperf/bdevperf -S 1 -q 32 -t 60 \
-m 0xF -o 4096 -w write -z

在另一个窗口,用RPC命令创建两个NVMe bdev。

[root@server spdk]# ./scripts/rpc.py bdev_nvme_attach_controller -b "Nvme0" \
-t "pcie" -a 0000:06:00.0
[root@server spdk]# ./scripts/rpc.py bdev_nvme_attach_controller -b "Nvme1" \
-t "pcie" -a 0000:07:00.0

接着运行bdevperf.py,启动bdevperf。

[root@server spdk]# ./test/bdev/bdevperf/bdevperf.py perform_tests

第一个窗口就会不断显示I/O刷新,持续时间为-t的值。顺便说一句,-T参数可以让I/O跑在指定的bdev上。

Job: Nvme0n1 (Core Mask 0x1)Nvme0n1             :   48352.50 IOPS     188.88 MiB/s
Job: Nvme1n1 (Core Mask 0x2)Nvme1n1             :   55140.50 IOPS     215.39 MiB/s=====================================================Total               :  103493.00 IOPS     404.27 MiB/s 
……

例3: 指定job文件。

-j,可以把自定义的I/O文件作为参数传入。

./test/bdev/bdevperf/bdevperf -t 10 --json bdev2.json -j bdev2.fio

bdev2.fio如下所示:

[global]
bs=1024
rwmixread=70
rw=read
iodepth=256
cpumask=0xff
[test1]
filename=Malloc0
[test2]
filename=Malloc1

五. SPDK的fio.py工具

SPDK把fio封装进了python文件,目前使用的ioengine是libaio,也可以改为其他ioengine。

fio.py在scripts文件夹里,命令参数如下所示:

  -i IO_SIZE,     
The desired I/O size in bytes.-p PROTOCOL,    
The protocol we are testing against. One of iscsi or nvmf.-d QUEUE_DEPTH, 
The desired queue depth for each job.-t TEST_TYPE,   
The fio I/O pattern to run. e.g. read, randwrite, randrw.-r RUNTIME,     
Time in seconds to run the workload.-n NUM_JOBS,    
The number of fio jobs to run in your workload.-v,             
Supply this argument to verify the I/O.

值得注意的是,要启动SPDK target进程后,才能使用fio.py。

举个例子:

在target端启动nvmf进程

[root@server1 spdk]# ./build/bin/nvmf_tgt

在initiator端通过rpc命令创建malloc的bdev,设定传输模式为rdma,并创建nvmf_subsystem和listener

[root@server2 spdk]# ./scripts/rpc.py bdev_malloc_create 64 512 -b Malloc0
[root@server2 spdk]# ./scripts/rpc.py nvmf_create_transport -t rdma -u 8192
[root@server2 spdk]# ./scripts/rpc.py nvmf_create_subsystem \
nqn.2016-06.io.spdk:cnode1 -a -s SPDK1
[root@server2 spdk]# ./scripts/rpc.py nvmf_subsystem_add_ns \
nqn.2016-06.io.spdk:cnode1 Malloc0
[root@server2 spdk]# ./scripts/rpc.py nvmf_subsystem_add_listener \
nqn.2016-06.io.spdk:cnode1 -t rdma -a 192.168.100.8 -s 4420

initiator端连接到target端

[root@server2 spdk]# nvme connect -t rdma -n "nqn.2016-06.io.spdk:cnode1" \
-a 192.168.100.8 -s 4420

运行fio.py(当然这里也可以直接使用内核fio测试)

[root@server2 spdk]# ./scripts/fio.py -p nvmf -i 262144 -d 64 -t read -r 10

fio结束后,断开target连接

[root@server2 spdk]# nvme disconnect -n "nqn.2016-06.io.spdk:cnode1"

上面启动target和多条RPC命令,也可以写进json文件一并执行。

[root@server spdk]# ./build/bin/nvmf_tgt --json spdk_tgt_nvmf.json

六. 以上性能测试工具的比较

目前SPDK fio_plugin仅限于线程使用模型,因此在使用SPDK fio_plugin时,fio job还必须指定thread = 1。

如果通过ioengine参数指定引擎的完整路径来动态加载ioengine,则fio当前也会在关闭时出现竞争条件 - 建议使用LD_PRELOAD以避免此竞争条件。在测试随机工作负载时,建议设置norandommap = 1。

fio的随机映射处理会消耗额外的CPU周期,这将使fio_plugin的性能随着时间的推移而降低,因为所有I/O都是在单个CPU内核上提交和完成的。

在使用SPDK插件在多个NVMe SSD上测试FIO时,建议在FIO配置中使用多个Jobs。

据观察,在测试多个NVMe SSD时,FIO(启用了SPDK plugin)和SPDK perf(examples/nvme/perf/perf)之间存在一些性能差距。

如果使用一个配置用于FIO测试的Job(即使用一个CPU核心),则性能比多个NVMe SSD时的SPDK perf(也使用一个CPU核心)差。 但是如果你使用多个Jobs进行FIO测试,FIO的性能就与SPDK perf相当。 在分析了这一现象后,我们认为这是由FIO架构引起的。 主要是FIO可以使用多个线程进行扩展(即使用多个CPU内核),但是对于多个I/O设备时,使用一个线程并不好。

表6.1 四种性能测试工具的比较

七. 常见问题

1. perf的性能比fio高

通过fio与perf对SPDK进行性能评估,得到的结果不同,大部分时候perf所得到的性能会比fio所得到的性能要高。

两种工具最大的差别在于,fio是通过与Linux fio工具进行集成,使其可以用fio_plugin引擎测试SPDK设备。而由于fio本身架构的问题,不能充分发挥SPDK的优势,整个应用框架仍然使用fio原本的架构。例如fio使用Linux的线程模型,在使用的时候,线程仍然被内核调度。而对于perf来说,是针对SPDK所设计的性能测试工具,因此在底层,不仅是I/O通过SPDK下发,同时一些底层应用框架都是为SPDK所设计的。例如刚刚所提到的线程模型,perf中是使用DPDK所提供的线程模型,通过使用CPU的亲和性将CPU核与线程捆绑,不再受内核调度,因此可以充分发挥SPDK下发I/O时的异步无锁化优势。这就是为什么perf所测得的性能要比fio高,尤其是在使用单个线程(单核)同时测试多块盘的情况下,fio所得性能要明显小于perf所得性能。因此,在同等情况下,我们更推荐用户使用perf工具对SPDK进行性能评估。

此外,在多numjob的情况下,fio与perf对iodepth的分配是不同的。通常在fio中,指定的iodepth表示所有job一共的iodepth,而在perf指定的iodepth(perf中-q参数)通常指每个job所使用的iodepth。举例如下:Fio:numjob=4, iodepth=128。则每个job对应的iodepth为32(128/4)。Perf:-c 0xF(相当于fio中numjob=4),-q 128(相当于fio中iodepth=128)。则每个job对应的iodepth为128。

2. 为什么测不出性能差异

对SPDK和内核的性能评估时,虽然性能有所提升,但是没有看到SPDK官方所展示的特别大的性能差异。

首先,如问题1中所述,不同的工具之间所得出的性能结果是不同的,另外最主要的因素还是硬盘本身的性能瓶颈所导致的问题。例如,以2D NAND为介质的Intel DC P4510,本身的性能都存在一定的瓶颈,因此无论是SPDK用户态驱动还是内核驱动,都不会达到较高的IOPS。若换用更高性能的硬盘,例如使用以3D Xpoint为介质的Optane(Intel DC P4800X)为测试对象,便会看到很大的性能差异。因此,硬盘性能越高,SPDK所发挥出的优势越明显,这也是SPDK产生的初衷,其本身就是为高性能硬盘所订制的。

3. 硬盘(iodepth)与CPU core

关于评估不同硬盘的队列深度(iodepth)与CPU core的问题。

通常根据不同硬盘的特点,选择不同的iodepth以及所使用的CPU core。通常在评估以2D NAND、3D NAND介质的硬盘,一般情况下,为了达到磁盘的最高性能,通常会选择较高的iodepth(128或256)。对于P4XXX的硬盘,通常可能一个CPU core无法达到满IOPS,此时并不是由于一个core的能力不够,而是由于硬盘中硬件队列本身限制的问题。因此,通常需使用两个CPU core才能够达到specification中的满IOPS。此外,对于以3D Xpoint为介质的Optane(Intel P4800X),通常只需要一个core并使用较小的iodepth即可达到满IOPS,此时已经达到硬盘的上限,若再次增大iodepth只会是latency变大而IOPS不再增长。

下面给出各种硬盘建议的评估参数:

Intel P4500、Intel P4510、Intel P4600:numjob=2, iodepth=256
Intel Optane(Intel P4800X):numjob=1, iodepth=8/16/32

4. 写性能虚高

通常以2D NAND、3D NAND为介质的硬盘,在测试write/randwrite的性能时候,通常要比sepcification里的最高值高很多。这是由于这类介质本身的问题,所以在测试时会出现write/randwrite性能虚高的问题。因此在测试该类硬盘,为了避免此类现象,通常需要对磁盘做一次precondition。通常的做法为:在格式化之后,对磁盘不断进行写操作,写满整个磁盘,使其进行稳态。以DC P4510 2TB为例,通常首先以4KB的大小顺序写两小时,之后再随机写一小时。此外,在测试的时候,fio参数中的ramp_time可以设置较大一些,避免初始的虚高值计入最终结果。

5. 磁盘性能测试指标

通常,对于一个磁盘的性能,我们主要从三方面去评估:IOPS、bandwidth、latency。

IOPS:通常评估磁盘的IOPS,主要关注块大小为4k,随机读写的情况。因此,通常fio关键参数设为:

bs=4k
iodepth=128
direct=1
rw=randread/randwrite

Bandwidth:评估磁盘的bandwidth,通常是关注块大小为128k,顺序读写的情况。因此通常fio关键参数设为:

bs=128k
iodepth=128
direct=1
rw=read/write

Latency:评估latency通常情况下,是关注一个I/O发送/完成的延迟情况,因此,通常选择iodepth为1。因此,通常fio关键参数设为:

bs=4k
iodepth=1
direct=1
rw=randread/randwrite

此外,对于latency的结果,不仅要关注平均值,同时也要注意长尾延迟,即99.99%的延迟情况。

注意:通常在测试磁盘的性能时,要添加direct=1,即绕过系统的cache buffer。这时测得的性能为裸盘的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/615758.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

两周掌握Vue3(四):计算属性、监听属性、事件处理

文章目录 一、计算属性1.什么是计算属性2.代码示例 二、监听属性三、事件处理 代码仓库&#xff1a;跳转 当前分支&#xff1a;04 一、计算属性 1.什么是计算属性 Vue 中的计算属性具有以下作用&#xff1a; 数据处理&#xff1a;计算属性可以用于对数据进行处理和计算&…

格雷希尔G65系列快速接头满足汽车减震器的气压、油压测试要求

当汽车经过不平路面时&#xff0c;汽车减震器可以抑制弹簧吸震后因反弹带来的震荡和来自路面的冲击&#xff0c;为乘客带来平稳舒适的行车体验。减震器在出厂之前&#xff0c;需要模拟汽车的真实行驶环境&#xff0c;在模拟当中需要对它们进行气压和油压的轮番测试。 客户的测试…

ssm基于java web的防疫工作志愿者服务平台的设计与实现论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本防疫工作志愿者服务平台就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数…

PHP短链接url还原成长链接

在开发过程中&#xff0c;碰到了需要校验用户回填的短链接是不是系统所需要的&#xff0c;于是就需要还原找出短链接所对应的长链接。 长链接转短链接 在百度上搜索程序员&#xff0c;跳转页面后的url就是一个长链接。当然你可以从任何地方复制一个长链接过来。 长链接 http…

stm32---输入捕获实验实操(巨详细)

这次来分享上次没说完的输入捕获的知识点 实验中用到两个引脚&#xff0c;一个是通用定时器 TIM3 的通道 1&#xff0c;即 PA6&#xff0c;用于输出 PWM 信号&#xff0c;另一 个是高级控制定时器 TIM1 的通道 1&#xff0c;即 PA8&#xff0c;用于 PWM 输入捕获&#xff0c;实…

vue3 生命周期

与 2.x 版本生命周期相对应的组合式 API beforeCreate -> 使用 setup() created -> 使用 setup() beforeMount -> onBeforeMount mounted -> onMounted beforeUpdate -> onBeforeUpdate updated -> onUpdated beforeDestroy -> onBeforeUnmount destroye…

window中安装Apache http server(httpd-2.4.58-win64-VS17)

windows中安装Apache http server(httpd-2.4.58-win64-VS17) 1、下载windows版本的的httpd, https://httpd.apache.org/docs/current/platform/windows.html#down 这里选择的是Apache Lounge编译的版本 https://www.apachelounge.com/download/ 2、解压到指定目录&#xff0c;这…

如何修复DLL错误或丢失的问题,这里提供几种方法

DLL错误是指DLL文件的任何错误&#xff0c;一种以.dll文件扩展名结尾的文件。 DLL错误可能出现在微软的任何操作系统中&#xff0c;包括Windows 10、Windows 8、Windows 7、Windows Vista和Windows XP。 DLL错误尤其麻烦&#xff0c;因为存在许多这样类型的文件&#xff0c;所…

入门教程:使用 Postman 发送 post 请求

Postman 是一个实用的开发工具&#xff0c;它让发送各类 POST 请求成为了可能&#xff0c;包括文本、JSON、XML 以及文件等。开发者利用此工具不仅能够检验API的功能性&#xff0c;还能仿真客户端的请求行为&#xff0c;进而深入了解客户端如何与 API 进行互动。 HTTP 协议中的…

半小时实现GPT纯血鸿蒙版

仅需半小时&#xff0c;即可实现纯血鸿蒙版本的ChatGPT&#xff01; 废话少说&#xff0c;先看效果图&#xff1a; 如上图所示&#xff0c;这个小Demo实现了AI智能问答。靠右加粗的文本是用户点击底部提交按钮后出现的&#xff1b;后面靠左对齐的普通文本是来自AI的回答内容。…

IP定位技术:如何保护患者的隐私和医疗数据安全?

随着科技的飞速发展&#xff0c;互联网已经深入到我们生活的方方面面&#xff0c;医疗行业也不例外。然而&#xff0c;这也带来了网络安全问题。如何保护患者的隐私和医疗数据的安全&#xff0c;成为了医疗行业面临的重大挑战。IP定位技术的应用&#xff0c;为解决这一问题提供…

Unity中URP下抓屏的 开启 和 使用

文章目录 前言一、抓屏开启1、Unity下开启抓屏2、Shader中开启抓屏 二、抓屏使用1、设置为半透明渲染队列&#xff0c;关闭深度写入2、申明纹理和采样器3、在片元着色器使用请添加图片描述 三、测试代码 前言 我们在这篇文章中看一下&#xff0c;URP下怎么开启抓屏。 一、抓屏…

《共建开源》系列:Airtest-Framework - UI自动化框架系统

Airtest- Framework 平台简介 Airtest- Framework 是 基于 unittest、Flask、Airtest 搭建的 开源的 UI 自动化框架系统 提供 HTTP API 接口&#xff0c;实现自动解析包名并自动执行 相应目录下的 Case。目前仅支持单台设备连接。多个任务会自动排队处理。 系统要求 Pytho…

【动态规划】【二分查找】C++算法 466 统计重复个数

作者推荐 【动态规划】458:可怜的小猪 涉及知识点 动态规划 二分查找 力扣:466 统计重复个数 定义 str [s, n] 表示 str 由 n 个字符串 s 连接构成。 例如&#xff0c;str [“abc”, 3] “abcabcabc” 。 如果可以从 s2 中删除某些字符使其变为 s1&#xff0c;则称字符串…

互信息法的原理详解

文章目录 互信息法&#xff08;上&#xff09;互信息是什么从信息增益角度理解互信息从变量分布一致角度理解互信息 卡方检验与离散变量的互信息法 互信息法&#xff08;上&#xff09; 尽管f_regression巧妙的构建了一个F统计量&#xff0c;并借此成功的借助假设检验来判断变…

跨境商城系统如何开发代购商城、国际物流、一件代发等功能?

跨境商城系统的开发涉及到多个方面&#xff0c;其中代购商城、国际物流和一件代发等功能是其中的重要组成部分。本文将详细介绍如何开发这些功能&#xff0c;以帮助跨境商城系统更好地满足市场需求。 一、代购商城的开发 代购商城是跨境商城系统中的重要功能之一&#xff0c;它…

互联网加竞赛 基于大数据的股票量化分析与股价预测系统

文章目录 0 前言1 课题背景2 实现效果3 设计原理QTChartsarma模型预测K-means聚类算法算法实现关键问题说明 4 部分核心代码5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于大数据的股票量化分析与股价预测系统 该项目较为新颖…

小程序基础学习(导航栏组件)

目标&#xff1a;把导航栏抽离成组件&#xff0c;

oracle 19c容器数据库data dump数据泵传输数据(2)---11g导19c

目录 1.在11gnon-cdb数据库中创建测试用户 2.在19cCDB容器数据库中新建pdb2 3.执行命令导出 4.执行命令导入 Exporting from a Non-CDB and Importing into a PDB 我們要記住一点&#xff1a;如果是全库导出导入的话&#xff0c;目标数据库没有的表空间我们要事先创建&#…

提高iOS App开发效率的方法

引言 随着智能手机的普及&#xff0c;iOS App开发成为越来越受欢迎的技术领域之一。许多人选择开发iOS应用程序来满足市场需求&#xff0c;但是iOS App开发需要掌握一些关键技术和工具&#xff0c;以提高开发效率和质量。本文将介绍一些关键点&#xff0c;可以帮助你进行高效的…