rtm姿态跟踪

6年前:

GitHub - YuliangXiu/PoseFlow: PoseFlow: Efficient Online Pose Tracking (BMVC'18)

报错:

Clarification on min_keypoints in tracking · Issue #1411 · open-mmlab/mmpose · GitHub

https://github.com/open-mmlab/mmpose/blob/c8e91ff456d82c7f985bf938cabfb68b2aa51d27/mmpose/apis/inference_tracking.py#L227

# Copyright (c) OpenMMLab. All rights reserved.
import warningsimport numpy as npfrom mmpose.core import OneEuroFilter, oks_ioudef _compute_iou(bboxA, bboxB):"""Compute the Intersection over Union (IoU) between two boxes .Args:bboxA (list): The first bbox info (left, top, right, bottom, score).bboxB (list): The second bbox info (left, top, right, bottom, score).Returns:float: The IoU value."""x1 = max(bboxA[0], bboxB[0])y1 = max(bboxA[1], bboxB[1])x2 = min(bboxA[2], bboxB[2])y2 = min(bboxA[3], bboxB[3])inter_area = max(0, x2 - x1) * max(0, y2 - y1)bboxA_area = (bboxA[2] - bboxA[0]) * (bboxA[3] - bboxA[1])bboxB_area = (bboxB[2] - bboxB[0]) * (bboxB[3] - bboxB[1])union_area = float(bboxA_area + bboxB_area - inter_area)if union_area == 0:union_area = 1e-5warnings.warn('union_area=0 is unexpected')iou = inter_area / union_areareturn ioudef _track_by_iou(res, results_last, thr):"""Get track id using IoU tracking greedily.Args:res (dict): The bbox & pose results of the person instance.results_last (list[dict]): The bbox & pose & track_id info of thelast frame (bbox_result, pose_result, track_id).thr (float): The threshold for iou tracking.Returns:int: The track id for the new person instance.list[dict]: The bbox & pose & track_id info of the personsthat have not been matched on the last frame.dict: The matched person instance on the last frame."""bbox = list(res['bbox'])max_iou_score = -1max_index = -1match_result = {}for index, res_last in enumerate(results_last):bbox_last = list(res_last['bbox'])iou_score = _compute_iou(bbox, bbox_last)if iou_score > max_iou_score:max_iou_score = iou_scoremax_index = indexif max_iou_score > thr:track_id = results_last[max_index]['track_id']match_result = results_last[max_index]del results_last[max_index]else:track_id = -1return track_id, results_last, match_resultdef _track_by_oks(res, results_last, thr):"""Get track id using OKS tracking greedily.Args:res (dict): The pose results of the person instance.results_last (list[dict]): The pose & track_id info of thelast frame (pose_result, track_id).thr (float): The threshold for oks tracking.Returns:int: The track id for the new person instance.list[dict]: The pose & track_id info of the personsthat have not been matched on the last frame.dict: The matched person instance on the last frame."""pose = res['keypoints'].reshape((-1))area = res['area']max_index = -1match_result = {}if len(results_last) == 0:return -1, results_last, match_resultpose_last = np.array([res_last['keypoints'].reshape((-1)) for res_last in results_last])area_last = np.array([res_last['area'] for res_last in results_last])oks_score = oks_iou(pose, pose_last, area, area_last)max_index = np.argmax(oks_score)if oks_score[max_index] > thr:track_id = results_last[max_index]['track_id']match_result = results_last[max_index]del results_last[max_index]else:track_id = -1return track_id, results_last, match_resultdef _get_area(results):"""Get bbox for each person instance on the current frame.Args:results (list[dict]): The pose results of the current frame(pose_result).Returns:list[dict]: The bbox & pose info of the current frame(bbox_result, pose_result, area)."""for result in results:if 'bbox' in result:result['area'] = ((result['bbox'][2] - result['bbox'][0]) *(result['bbox'][3] - result['bbox'][1]))else:xmin = np.min(result['keypoints'][:, 0][result['keypoints'][:, 0] > 0],initial=1e10)xmax = np.max(result['keypoints'][:, 0])ymin = np.min(result['keypoints'][:, 1][result['keypoints'][:, 1] > 0],initial=1e10)ymax = np.max(result['keypoints'][:, 1])result['area'] = (xmax - xmin) * (ymax - ymin)result['bbox'] = np.array([xmin, ymin, xmax, ymax])return resultsdef _temporal_refine(result, match_result, fps=None):"""Refine koypoints using tracked person instance on last frame.Args:results (dict): The pose results of the current frame(pose_result).match_result (dict): The pose results of the last frame(match_result)Returns:(array): The person keypoints after refine."""if 'one_euro' in match_result:result['keypoints'][:, :2] = match_result['one_euro'](result['keypoints'][:, :2])result['one_euro'] = match_result['one_euro']else:result['one_euro'] = OneEuroFilter(result['keypoints'][:, :2], fps=fps)return result['keypoints']def get_track_id(results,results_last,next_id,min_keypoints=3,use_oks=False,tracking_thr=0.3,use_one_euro=False,fps=None):"""Get track id for each person instance on the current frame.Args:results (list[dict]): The bbox & pose results of the current frame(bbox_result, pose_result).results_last (list[dict], optional): The bbox & pose & track_id infoof the last frame (bbox_result, pose_result, track_id). None isequivalent to an empty result list. Default: Nonenext_id (int): The track id for the new person instance.min_keypoints (int): Minimum number of keypoints recognized as person.0 means no minimum threshold required. Default: 3.use_oks (bool): Flag to using oks tracking. default: False.tracking_thr (float): The threshold for tracking.use_one_euro (bool): Option to use one-euro-filter. default: False.fps (optional): Parameters that d_cutoffwhen one-euro-filter is used as a video inputReturns:tuple:- results (list[dict]): The bbox & pose & track_id info of the \current frame (bbox_result, pose_result, track_id).- next_id (int): The track id for the new person instance."""if use_one_euro:warnings.warn('In the future, get_track_id() will no longer perform ''temporal refinement and the arguments `use_one_euro` and ''`fps` will be deprecated. This part of function has been ''migrated to Smoother (mmpose.core.Smoother). See ''demo/top_down_pose_trackign_demo_with_mmdet.py for an ''example.', DeprecationWarning)if results_last is None:results_last = []results = _get_area(results)if use_oks:_track = _track_by_okselse:_track = _track_by_ioufor result in results:track_id, results_last, match_result = _track(result, results_last,tracking_thr)if track_id == -1:if np.count_nonzero(result['keypoints'][:, 1]) >= min_keypoints:result['track_id'] = next_idnext_id += 1else:# If the number of keypoints detected is small,# delete that person instance.result['keypoints'][:, 1] = -10result['bbox'] *= 0result['track_id'] = -1else:result['track_id'] = track_idif use_one_euro:result['keypoints'] = _temporal_refine(result, match_result, fps=fps)del match_resultreturn results, next_iddef vis_pose_tracking_result(model,img,result,radius=4,thickness=1,kpt_score_thr=0.3,dataset='TopDownCocoDataset',dataset_info=None,show=False,out_file=None):"""Visualize the pose tracking results on the image.Args:model (nn.Module): The loaded detector.img (str | np.ndarray): Image filename or loaded image.result (list[dict]): The results to draw over `img`(bbox_result, pose_result).radius (int): Radius of circles.thickness (int): Thickness of lines.kpt_score_thr (float): The threshold to visualize the keypoints.skeleton (list[tuple]): Default None.show (bool):  Whether to show the image. Default True.out_file (str|None): The filename of the output visualization image."""if hasattr(model, 'module'):model = model.modulepalette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],[230, 230, 0], [255, 153, 255], [153, 204, 255],[255, 102, 255], [255, 51, 255], [102, 178, 255],[51, 153, 255], [255, 153, 153], [255, 102, 102],[255, 51, 51], [153, 255, 153], [102, 255, 102],[51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],[255, 255, 255]])if dataset_info is None and dataset is not None:warnings.warn('dataset is deprecated.''Please set `dataset_info` in the config.''Check https://github.com/open-mmlab/mmpose/pull/663 for details.',DeprecationWarning)# TODO: These will be removed in the later versions.if dataset in ('TopDownCocoDataset', 'BottomUpCocoDataset','TopDownOCHumanDataset'):kpt_num = 17skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12],[5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],[8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4],[3, 5], [4, 6]]elif dataset == 'TopDownCocoWholeBodyDataset':kpt_num = 133skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12],[5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],[8, 10], [1, 2], [0, 1], [0, 2],[1, 3], [2, 4], [3, 5], [4, 6], [15, 17], [15, 18],[15, 19], [16, 20], [16, 21], [16, 22], [91, 92],[92, 93], [93, 94], [94, 95], [91, 96], [96, 97],[97, 98], [98, 99], [91, 100], [100, 101], [101, 102],[102, 103], [91, 104], [104, 105], [105, 106],[106, 107], [91, 108], [108, 109], [109, 110],[110, 111], [112, 113], [113, 114], [114, 115],[115, 116], [112, 117], [117, 118], [118, 119],[119, 120], [112, 121], [121, 122], [122, 123],[123, 124], [112, 125], [125, 126], [126, 127],[127, 128], [112, 129], [129, 130], [130, 131],[131, 132]]radius = 1elif dataset == 'TopDownAicDataset':kpt_num = 14skeleton = [[2, 1], [1, 0], [0, 13], [13, 3], [3, 4], [4, 5],[8, 7], [7, 6], [6, 9], [9, 10], [10, 11], [12, 13],[0, 6], [3, 9]]elif dataset == 'TopDownMpiiDataset':kpt_num = 16skeleton = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [6, 7],[7, 8], [8, 9], [8, 12], [12, 11], [11, 10], [8, 13],[13, 14], [14, 15]]elif dataset in ('OneHand10KDataset', 'FreiHandDataset','PanopticDataset'):kpt_num = 21skeleton = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7],[7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13],[13, 14], [14, 15], [15, 16], [0, 17], [17, 18],[18, 19], [19, 20]]elif dataset == 'InterHand2DDataset':kpt_num = 21skeleton = [[0, 1], [1, 2], [2, 3], [4, 5], [5, 6], [6, 7], [8, 9],[9, 10], [10, 11], [12, 13], [13, 14], [14, 15],[16, 17], [17, 18], [18, 19], [3, 20], [7, 20],[11, 20], [15, 20], [19, 20]]else:raise NotImplementedError()elif dataset_info is not None:kpt_num = dataset_info.keypoint_numskeleton = dataset_info.skeletonfor res in result:track_id = res['track_id']bbox_color = palette[track_id % len(palette)]pose_kpt_color = palette[[track_id % len(palette)] * kpt_num]pose_link_color = palette[[track_id % len(palette)] * len(skeleton)]img = model.show_result(img, [res],skeleton,radius=radius,thickness=thickness,pose_kpt_color=pose_kpt_color,pose_link_color=pose_link_color,bbox_color=tuple(bbox_color.tolist()),kpt_score_thr=kpt_score_thr,show=show,out_file=out_file)return img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/615373.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

根能抵达的节点(二分法、DFS)C++

给定一棵由 N个节点构成的带边权树。节点编号从 0到 N−1,其中 0 号点为根节点。最初,从根节点可以抵达所有节点(包括自己)。如果我们将所有边权小于 X 的边全部删掉,那么从根节点可以抵达的节点数目就可能发生改变。 …

全国首创:福建协和医院成功完成长期型人工心脏微创植入

导语 微创技术在心脏手术领域正逐渐发展,并取得了突破性进展。最近,福建协和医院成功进行了全球第二例微创EVAHEART左心室辅助装置手术,为心脏病患者带来新的希望和治疗选择。 2023年11 月,中华医学会胸心血管外科学分会第八届…

从零开始学Python:分支结构

应用场景 迄今为止,我们写的Python代码都是一条一条语句顺序执行,这种代码结构通常称之为顺序结构。然而仅有顺序结构并不能解决所有的问题,比如我们设计一个游戏,游戏第一关的通关条件是玩家获得1000分,那么在完成本…

电商建表常用前缀[ams/mms/pms/oms/cms/wms/crm]

ams:代表 "Admin Management System",即管理后台系统。该模块通常用于管理用户、权限、订单等与后台管理相关的功能。 mms:代表 "Merchant Management System",即商家管理系统。该模块通常用于管理商家账户、…

Duality

对偶 拉格朗日对偶函数 考虑优化问题 min ⁡ f 0 ( x ) s.t. f i ( x ) ≤ 0 , i 1 , … , m h i ( x ) 0 , i 1 , … , p \begin{array}{ll} \min & f_0\left(\mathbf{x}\right) \\ \text {s.t.} & f_i\left(\mathbf{x}\right) \leq 0, \quad i1, \ldots, m \\ …

基于人脸识别的智慧校园方案—校内区域智能管理(2)

实验室人脸识别 实验是教师、学生和科研人员进行教学和科学研究的重要场地,也是学校教务管理中的重要组成部分,高校实验室管理质量直接影响教学科研工作质量。 随着在校学生的日益增多,实验室资源如何分配利用、实验室设施安全如何保障也成为一大难题。运用智能管理系统开…

windows安装Elasticsearch后使用ik分词器报错解决办法

最近在学习Elasticsearch,安装完成后下载了ik分词器压缩到plugins目录下启动es报错如下: java.security.AccessControlException: access denied (“java.io.FilePermission” “D:…\plugins\ik-analyzer\config\IKAnalyzer.cfg.xml” “read”)咋一看…

外贸建站主机哪个好?海洋建站系统怎么样?

外贸建站主机的选择攻略?搭建电商网站用哪个主机好? 要在互联网上建立一个成功的外贸网站,选择一款稳定可靠的外贸建站主机是至关重要的一环。海洋建站将探讨在众多选择中,如何寻找一款适合自己业务需求的外贸建站主机。 外贸建…

PCF8563转STM32 RTC避坑指南

问题一,时间读取错误 原因,读写时间必须Time在前,Date在后 HAL_RTC_GetTime(&hrtc, &time, RTC_FORMAT_BCD); HAL_RTC_GetDate(&hrtc, &date, RTC_FORMAT_BCD); HAL_RTC_SetTime(&hrtc, &time, RTC_FORMAT_BCD); …

【AI视野·今日Sound 声学论文速览 第四十四期】Tue, 9 Jan 2024

AI视野今日CS.Sound 声学论文速览 Tue, 9 Jan 2024 Totally 27 papers 👉上期速览✈更多精彩请移步主页 Daily Sound Papers DJCM: A Deep Joint Cascade Model for Singing Voice Separation and Vocal Pitch Estimation Authors Haojie Wei, Xueke Cao, Wenbo Xu…

【深度学习 | 风格迁移】神经网络风格迁移,原理详解附详细案例源码

🤵‍♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…

【Linux】Linux 系统编程——相对路径和绝对路径

文章目录 概述绝对路径相对路径绝对路径的作用相对路径的作用系统是怎么通过相对路径定位文件的? 概述 相对路径和绝对路径是文件系统中定位文件和目录的两种主要方法。它们的主要区别在于如何引用文件的位置。 绝对路径 定义: 绝对路径是从文件系统的根目录&…

我国实施个人信息出境认证的要点

文章目录 前言一、个人信息保护认证与个人信息出境认证的关系二、欧盟提供了个人信息出境认证的制度先例(一)欧盟立法规定了认证制度是数据出境方式之一(二)欧盟设计完整的数据安全认证机制(三)欧盟内承认多种数据安全认证制度并存(四)欧盟数据安全认证主题多样化(五)…

yolov8 瑞芯微 RKNN 的 C++部署,部署工程难度小、模型推理速度快

之前写过两次yolov8目标检测部署,后续继续思考,针对部署还有优化空间,本示例的部署方式优化了部署难度,加快了模型推理速度(略微增加了后处理的时耗)。 特别说明:如有侵权告知删除,…

麒麟OS + DM8数据库(Graalvm for JDK17) 测试

1、添加依赖 implementation com.dameng:DmJdbcDriver18:8.1.3.62 implementation com.baomidou:mybatis-plus-boot-starter:3.5.4 2、application.yml 数据源配置 spring: datasource: driver-class-name: dm.jdbc.driver.DmDriver #com.mysql.cj.jdbc.Driver url: jdbc:d…

【linux】linux中硬链接和符号链接的区别

在Linux系统中,硬链接(Hard Link)和符号链接(Symbolic Link,也称为软链接)是两种不同类型的文件链接方式,它们的主要区别如下: 硬链接(Hard Link)&#xff1a…

高效微调大型预训练模型的Prompt Learning方法

目录 前言1 prompt learning简介2 prompt learning步骤2.1 选择模型2.2 选择模板(Template)2.3 Verbalizer的构建 3 Prompt Learning训练策略3.1 Prompting组织数据,优化参数3.2 增加Soft Prompts,冻结模型,优化Prompt…

【2023年度总结与2024展望】---23年故事不长,且听我来讲

文章目录 前言一、学习方面1.1 攥写博客1.2 学习内容1.3 参加比赛获得证书 二、生活方面2.1写周报记录生活 三、运动方面四、CSDN的鼓励五、24年展望总结 前言 时光飞逝,又是新的一年,遥想去年2023年我也同样在这个时间段参加了CSDN举办的年度总结活动&a…

react全家桶

1、create-react-app npx create-react-app web --template typescript 2、axios npm i axios 3、antd官网 npm install antd --save 4、react路由 npm i react-router-dom 5、use-immer npm install use-immer 6、sass、sass-loader、sass-resources-loader np…

PDF结构详解

文章目录 介绍前言高保真的文件什么是PDF?PDF的一些优点版本摘要谁在使用PDF?有用的免费软件谁应该阅读 构建一个简单PDF文件基本PDF语法File StructureDocument ContentPage Content 构建简单PDF文件头目录,交叉引用表和文件尾主要对象图形内…