了解PyTorch中的缩放点积注意力及演示

torch.nn.functional.scaled_dot_product_attention 函数在 PyTorch 框架中用于实现缩放点积注意力(Scaled Dot-Product Attention)。这是一种在自然语言处理和计算机视觉等领域常用的注意力机制。它的主要目的是通过计算查询(query)、键(key)和值(value)之间的关系,来决定我们应该在输入的哪些部分上聚焦。

函数用法和用途:

此函数通过对查询(query)、键(key)和值(value)张量进行操作,计算得到注意力机制的输出。它主要用于序列模型中,如Transformer结构,帮助模型更有效地捕捉序列中的重要信息。

参数说明:

  • query:查询张量,形状为(N, ..., L, E),其中N是批大小,L是目标序列长度,E是嵌入维度。
  • key:键张量,形状为(N, ..., S, E),S是源序列长度。
  • value:值张量,形状为(N, ..., S, Ev),Ev是值的嵌入维度。
  • attn_mask:可选的注意力掩码张量,形状为(N, ..., L, S)
  • dropout_p:丢弃概率,用于应用dropout。
  • is_causal:如果为真,假设因果注意力掩码。
  • scale:缩放因子,在softmax之前应用。

注意事项:

  • 此函数是beta版本,可能会更改。
  • 根据不同的后端(如CUDA),函数可能调用优化的内核以提高性能。
  • 如果需要更高的精度,可以使用支持torch.float64的C++实现。

数学原理:

缩放点积注意力的核心是根据查询和键之间的点积来计算注意力权重,然后将这些权重应用于值。公式通常如下所示:

Attenton(Q,K,V)=softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V

其中Q、K和V 分别是查询、键和值矩阵,d_{k} 是键向量的维度。

示例代码:

import torch
import torch.nn.functional as F# 定义查询、键和值张量
query = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
key = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
value = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")# 使用上下文管理器确保运行一个融合内核
with torch.backends.cuda.sdp_kernel(enable_math=False):output = F.scaled_dot_product_attention(query, key, value)

这段代码首先定义了查询、键和值张量,然后使用torch.backends.cuda.sdp_kernel上下文管理器来确保使用一个融合内核,最后调用scaled_dot_product_attention函数计算注意力输出。 

总结

torch.nn.functional.scaled_dot_product_attention 是一个强大的PyTorch函数,用于实现缩放点积注意力机制。它通过计算查询、键和值之间的关系,为深度学习模型提供了一种有效的方式来捕获和关注重要信息。适用于各种序列处理任务,此函数特别适合于复杂的自然语言处理和计算机视觉应用。其高效的实现和可选的优化内核使其在处理大规模数据时表现卓越。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/614984.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux ----冯诺依曼体系结构与操作系统

目录 前言 一、冯诺依曼体系结构 二、为什么选择冯诺依曼体系结构? 三、使用冯诺依曼结构解释问题 问题1: 问题2: 四、操作系统 1.操作系统是什么 2.为什么需要操作系统 3.操作系统怎样管理的 4.如何给用户提供良好环境 五、我们是怎样调用系…

Github 2024-01-12Java开源项目日报 Top10

根据Github Trendings的统计,今日(2024-01-12统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目10Vue项目3 Apache Flink: 开源流处理框架 创建周期:3506 天开发语言:Java协…

iOS rootless无根越狱解决方案

据游戏工委数据统计,2023年国内游戏市场实际销售收入与用户规模双双创下新高,游戏普遍采用多端并发方式,成为收入增长的主因之一。 中国市场实际销售收入及增长率丨数据来源:游戏工委 多端互通既是机遇,也是挑战。从游…

【AI大模型应用开发】1.0 Prompt Engineering(提示词工程)- 典型构成、原则与技巧,代码中加入Prompt

从这篇文章开始,我们就正式开始学习AI大模型应用开发的相关知识了。首先是提示词工程(Prompt Engineering)。 文章目录 0. 什么是提示词(Prompt)1. 为什么Prompt会起作用 - 大模型工作原理2. Prompt的典型构成、原则与…

【5】商密测评密码辅助工具

0X01 前言 最近在学了下商密测评,研究了下技术层面的测评,感觉找工具不方便,就顺手自己造了个辅助工具,都是自己遇到需要用的。 0x02 工具功能介绍 不爱打字,直接上图。后续根据技术测评层面需要继续完善和增加功能。…

基于VSG控制的MMC并网逆变器MATLAB仿真模型

微❤关注“电气仔推送”获得资料(专享优惠) 模型简介 根据传统同步发电机的运行特性设计了MMC-VSG功频控制器和励磁控制器, 实现了MMC-VSG逆变器对高压电网电压和频率的支撑。该模型包含MMC变流器模块,环流抑制模块,…

HackTheBox-Keeper

OpenVPN连接 连接上HackTheBox! 同时找到这个靶机,进行join!分配的靶机的地址位10.10.11.227! 信息收集 nmap -sT --min-rate 10000 -p- 10.10.11.227 开放端口为22和80端口 服务版本和操作系统信息探测: nmap -s…

Milvus Cloud与携程的向量探索大公开

【User Tech】2024 我们来啦! 今年,【User Tech】将更加专注于为社区用户提供技术功能解读、热点答疑,聚焦更丰富、更多样化的行业或使用场景的用户案例。我们期待通过分享更多关于 Milvus Cloud 的实战经验,为大家在 AI、大模型、…

YOLOv8算法改进【NO.98】改进损失函数为最新提出的Shape-IoU

前 言 YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通: 第一…

李沐之经典卷积神经网络

目录 1. LeNet 2. 代码实现 1. LeNet 输入是32*32图片,放到一个5*5的卷积层里面,卷积层的输出通道数是6,高宽都是28(32-5128)。再经过2*2的池化层,把28*28变成14*14(28-22)/214&am…

《Vue2 进阶知识》动态挂载组件之Vue.extend + vm.$mount

前言 目前工作还是以 Vue2 为主,今早有人提问 如何动态挂载组件? 话说很久很久以前就实现过,今天再详细的整理一下此问题! 开始 动态组件如下,是个简单的例子: 但请注意这里给了个 id"test2"…

vue 组件 import make sure to provide the “name“ option.

百度了好多结果,都过时了,例如: 模块引入是否加{} 再比如: 对于递归组件,请确保提供“name”选项。 出现该错误情况之一: 错误由未正确引入组件或子组件引起,如element-ui中form表单组件未引…

PostgreSQL之SEMI-JOIN半连接

什么是Semi-Join半连接 Semi-Join半连接,当外表在内表中找到匹配的记录之后,Semi-Join会返回外表中的记录。但即使在内表中找到多条匹配的记录,外表也只会返回已经存在于外表中的记录。而对于子查询,外表的每个符合条件的元组都要…

GitLab 502 Whoops, GitLab is taking too much time to respond. 解决

1、先通过gitlab-ctl restart进行重启,2分钟后看是否可以正常访问,为什么要2分钟,因为gitlab启动会有很多配套的服务启动,包括postgresql等 2、如果上面不行,再看gitlab日志,通过gitlab-ctl tail命令查看&…

【Arduino】编程语言:定时函数、数学函数、字符函数(功能、语法格式、参数说明、返回值) | 软件开发环境:安装步骤介绍(EXE安装版、ZIP安装版)

你的负担将变成礼物,你受的苦将照亮你的路。———泰戈尔 🎯作者主页: 追光者♂🔥 🌸个人简介: 💖[1] 计算机专业硕士研究生💖 🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿 🌟[3] 2022年度博客之星人工智能领域TOP4🌟 🏅[4] 阿里云社区…

再发一波微信红包封面,免费!免费!免费!

我是90后程序员,大家都叫我小码哥,从事互联网近10余年了,一直想在互联网上分享自己的管理经验和技术经验,同时也想找一些志同道合的朋友,一起聊聊如何从互联网中快速的成长起来,无论是通过技术、互联网风口…

谈谈曲线与曲面

目录 1、非参数曲线与曲面 2、方程式曲线与曲面 3、参数曲线与曲面 3.1平面参数曲线 3.2空间参数曲线 3.3参数曲面 1、非参数曲线与曲面 非参数曲线曲面是一种与参数曲线曲面相对的概念。在非参数方法中,曲线或曲面不是通过参数方程来定义的,而是通…

【AI视野·今日Robot 机器人论文速览 第七十二期】Mon, 8 Jan 2024

AI视野今日CS.Robotics 机器人学论文速览 Mon, 8 Jan 2024 Totally 13 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers Deep Reinforcement Learning for Local Path Following of an Autonomous Formula SAE Vehicle Authors Harvey Merton, Thoma…

算法通关村番外篇-跳表

大家好我是苏麟 , 今天来聊聊调表 . 跳表很少很少实现所以我们只了解就可以了 . 跳表 链表在查找元素的时候,因为需要逐一查找,所以查询效率非常低,时间复杂度是O(N),于是就出现了跳表。跳表是在链表基础上改进过来的&#xff0…

OpenCV——图像按位运算

目录 一、算法概述1、逻辑运算2、函数解析3、用途 二、代码实现三、结果展示 OpenCV——图像按位运算由CSDN点云侠原创,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法概述 1、逻辑运算 OpenCV4 针对两个图像之…