蚁群算法解决旅行商问题的完整Python实现

蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的启发式优化算法。它通过模拟蚂蚁在寻找食物时释放信息素的行为,来解决组合优化问题,特别是旅行商问题(TSP)。

蚁群算法的基本思想是,蚂蚁在搜索过程中通过释放信息素来引导其他蚂蚁的行为。蚂蚁在路径上释放的信息素会被其他蚂蚁感知到,并且更倾向于选择信息素浓度较高的路径。随着时间的推移,信息素会逐渐蒸发,从而使路径上的信息素浓度趋于平衡。

下面是一个使用蚁群算法解决旅行商问题的Python代码示例:

import numpy as npclass AntColonyOptimizer:def __init__(self, num_ants, num_iterations, alpha, beta, rho, Q):self.num_ants = num_antsself.num_iterations = num_iterationsself.alpha = alphaself.beta = betaself.rho = rhoself.Q = Qdef optimize(self, distance_matrix):num_cities = distance_matrix.shape[0]pheromone_matrix = np.ones((num_cities, num_cities))best_path = Nonebest_distance = np.inffor iteration in range(self.num_iterations):paths = self.construct_paths(distance_matrix, pheromone_matrix)self.update_pheromones(pheromone_matrix, paths)current_best_path = min(paths, key=lambda x: self.calculate_distance(x, distance_matrix))current_best_distance = self.calculate_distance(current_best_path, distance_matrix)if current_best_distance < best_distance:best_path = current_best_pathbest_distance = current_best_distanceself.evaporate_pheromones(pheromone_matrix)return best_path, best_distancedef construct_paths(self, distance_matrix, pheromone_matrix):num_cities = distance_matrix.shape[0]paths = []for ant in range(self.num_ants):path = [0]  # Start from city 0visited = set([0])while len(path) < num_cities:current_city = path[-1]next_city = self.select_next_city(current_city, visited, pheromone_matrix, distance_matrix)path.append(next_city)visited.add(next_city)path.append(0)  # Return to city 0paths.append(path)return pathsdef select_next_city(self, current_city, visited, pheromone_matrix, distance_matrix):num_cities = distance_matrix.shape[0]unvisited_cities = set(range(num_cities)) - visitedprobabilities = []for city in unvisited_cities:pheromone = pheromone_matrix[current_city, city]distance = distance_matrix[current_city, city]probability = pheromone**self.alpha * (1/distance)**self.betaprobabilities.append(probability)probabilities = np.array(probabilities)probabilities /= np.sum(probabilities)next_city = np.random.choice(list(unvisited_cities), p=probabilities)return next_citydef update_pheromones(self, pheromone_matrix, paths):for path in paths:distance = self.calculate_distance(path, distance_matrix)pheromone_deposit = self.Q / distancefor i in range(len(path)-1):city_a = path[i]city_b = path[i+1]pheromone_matrix[city_a, city_b] += pheromone_depositdef evaporate_pheromones(self, pheromone_matrix):pheromone_matrix *= (1 - self.rho)def calculate_distance(self, path, distance_matrix):distance = 0for i in range(len(path)-1):city_a = path[i]city_b = path[i+1]distance += distance_matrix[city_a, city_b]return distance# Example usage
distance_matrix = np.array([[0, 2, 9, 10],[1, 0, 6, 4],[15, 7, 0, 8],[6, 3, 12, 0]])aco = AntColonyOptimizer(num_ants=10, num_iterations=100, alpha=1, beta=2, rho=0.5, Q=1)
best_path, best_distance = aco.optimize(distance_matrix)print("Best path:", best_path)
print("Best distance:", best_distance)

示例中使用一个4x4的距离矩阵来表示城市之间的距离。可以根据需要修改距离矩阵的大小和内容。蚁群算法的参数包括蚂蚁数量(num_ants)、迭代次数(num_iterations)、信息素重要程度(alpha)、启发式信息重要程度(beta)、信息素蒸发率(rho)和信息素增量(Q)根据具体问题进行调整。

程序输出如下:

Best path: [0, 1, 2, 3, 0]
Best distance: 22

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/614421.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#.Net学习笔记——设计模式六大原则

***************基础介绍*************** 1、单一职责原则 2、里氏替换原则 3、依赖倒置原则 4、接口隔离原则 5、迪米特法原则 6、开闭原则 一、单一职责原则 举例&#xff1a;类T负责两个不同的职责&#xff1a;职责P1&#xff0c;职责P2。当由于职责P1需求发生改变而需要修…

Kotlin 1.7.0 beta发布,改进构建器类型推断

Kotlin 1.7.0是JetBrains的跨平台、多用途编程语言的计划新版本&#xff0c;目前已进入beta发布阶段&#xff0c;主要特点是对构建器类型推断和新的内存管理器进行了更改。 改进编写泛型构建器时的构建器类型推断 构建器推断是调用泛型构建器函数时的一种特殊类型推断&#xf…

Gorm实战,轻松掌握数据库增删改查技巧!

Gorm实战&#xff0c;轻松掌握数据库增删改查技巧&#xff01; CRUD通常指数据库的增删改查操作&#xff0c;本文详细介绍了如何使用GORM实现创建、查询、更新和删除操作。 文章目录 Gorm实战&#xff0c;轻松掌握数据库增删改查技巧&#xff01;一、Create&#xff08;创建&a…

综合智慧能源监测管理平台,实现能源管理“透明”化

能源问题是全球面临的最大问题&#xff0c;在提高经济增长的同时&#xff0c;也引发了能源供应危机及环境严重等问题&#xff0c;降低能源管理、低碳环保是我们未来发展的必经之路。 为了解决这一问题&#xff0c;智慧能源管理平台应运而生。平台采用微服务架构&#xff0c;整…

内存溢出和内存泄露的区别

这道题是面试常考的&#xff0c;一定要区分好区别&#xff0c;我之前就是直接认为内存溢出就是内存泄漏了 概念 内存溢出&#xff1a;是指程序在申请内存时&#xff0c;没有足够的内存空间供其使用。比如&#xff0c;申请了一个整数的内存&#xff0c;但实际存了一个需要 lon…

MongoDB相关问题及答案(2024)

1、MongoDB是什么&#xff0c;它与其他传统关系型数据库的主要区别是什么&#xff1f; MongoDB是一种开源文档型数据库&#xff0c;它属于NoSQL数据库的一个分支。NoSQL数据库提供了一种存储和检索数据的机制&#xff0c;这种机制的建模方式与传统的关系型数据库不同。而Mongo…

rime中州韵小狼毫 词组注释 滤镜

在rime中州韵小狼毫 联想词组 滤镜一文中&#xff0c;我们通过Filter滤镜功能配置了联想词组的功能&#xff0c;这使得我们在输入一些关键词汇时&#xff0c;可以联想补充一些附加的词组&#xff0c;例如我输入“手机”&#xff0c;就可以联想补充对应的手机号&#xff0c;如下…

【c++】list迭代器失效问题

目录 一、list iterator的使用 二、list的迭代器失效 一、list iterator的使用 对于list的迭代器的用法&#xff0c;可以将它看做一个指针&#xff08;实际要更加复杂&#xff09;来使用&#xff0c;该指针指向list中的一个节点。 【注意】 (1)begin和end为正向迭代器&#x…

Golang 中可比较的数据类型详解

目录 可比较的概念 基本数据类型的比较 复合数据类型的比较 不可比较类型的替代方案 比较操作的注意事项 小结 在日常开发中&#xff0c;比较操作是最常用的基本操作之一&#xff0c;可以用来判断变量之间是否相等或者对应的大小关系&#xff0c;比较操作对于排序、查找和…

127. 单词接龙

和433.最小基因变化这道题一样的解法。 https://blog.csdn.net/qq_43606119/article/details/135538247 class Solution {public int ladderLength(String beginWord, String endWord, List<String> wordList) {Set<String> cnt new HashSet<>();for (int …

从学习投研流程的角度学习Qlib

许多同学只是把Qlib当做一个简单的工具来学习。其实Qlib隐含了一套正规的投研流程&#xff0c;从投研流程的视角去学习Qlib,则不仅能加深对Qlib的理解&#xff0c;而且能够掌握正确的投研流程&#xff0c;哪怕以后不使用Qlib而是使用其他系统了&#xff0c;这套流程还是适用的。…

第十一章 Cookie

第十一章 Cookie 1.什么是Cookie2.Cookie的创建3.Cookie的获取4.Cookie值的修改5.谷歌浏览器和火狐浏览器如何查看Cookie6.Cookie的存活设置7.Cookie的path属性8.Cookie练习之免用户名登入 1.什么是Cookie 2.Cookie的创建 下面我看看如何创建Cookie&#xff0c;如何让客户端保…

即时战略游戏的AI策略思考

想起来第一次玩RTS游戏&#xff0c;就是框住一大群兵进攻&#xff0c;看他们把对面消灭干净……我接触的第一款游戏是《傲世三国》那会儿是小学&#xff0c;后来高中接触了魔兽地图编辑器&#xff0c;我发现自己喜欢直接看属性而省去争论和试验的步骤——我喜欢能一眼看透的感觉…

【LeetCode:49. 字母异位词分组 | 哈希表】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

ARCGIS PRO SDK 设置UI控件状态:启用/禁用

举例&#xff1a; 第一步&#xff1a;添加两个 Button 分别命名为Connect、Disconnect 第二步&#xff1a;nfig.daml添加状态和条件&#xff1a;在 DAML 中定义条件。请记住&#xff0c;条件存在于模块标记<modules>之外&#xff0c;下代码定义&#xff1a;Disconnected_…

AIGC大模型必备知识——LLM ,你知道它是如何训练的吗?小白必读深度好文

Look&#xff01;&#x1f440;我们的大模型商业化落地产品&#x1f4d6;更多AI资讯请&#x1f449;&#x1f3fe;关注Free三天集训营助教在线为您火热答疑&#x1f469;&#x1f3fc;‍&#x1f3eb; 近年来&#xff0c;人工智能&#xff08;AI&#xff09;领域经历了令人瞩目…

Pyhton基础学习系列14——函数

文章目录 一、函数的定义二、函数的分类1.系统函数2.标准库函数和第三方库函数3.自定义函数 三、函数的使用1.基本语法2.函数使用案例和说明文档1.函数的说明文档2.输入两个正整数&#xff0c;计算它们的最大公约数和最小公倍数 3.from和import的区别4.return和print的使用 四、…

操作系统(简答题)

注意&#xff01;&#xff01;&#xff01;下列只是“一些&#xff08;or 一部分&#xff09;” 如果想要都会click this 选择、填空、判断click this 1. 操作系统的基本特性有哪些?什么是实时系统&#xff1f; 操作系统的基本特性有&#xff1a; 并发&#xff08;Concurre…

python 工具代码

可以使用 Python 标准库中的 shutil 模块中的 copytree 函数来实现复制目录及其子目录中的所有文件。具体操作步骤如下&#xff1a; import shutil# 复制 src 目录及其子目录中的所有文件到 dst 目录中 shutil.copytree(src, dst)其中&#xff0c;src 表示要复制的源目录&…

String有没有最大长度限制?

大家都用过String字符串&#xff0c;有的人可能还不知道它的长度在某些方面是有一些限制。 public String(byte bytes[], int offset, int length);这是java.lang.String中的一个构造函数&#xff0c;可以看到它的长度是int类型&#xff0c;int的最大取值是2^31-1.但是我们却不…