YOLOv8 Ultralytics:使用Ultralytics框架进行定向边界框对象检测
- 前言
- 相关介绍
- 前提条件
- 实验环境
- 安装环境
- 项目地址
- Linux
- Windows
- 使用Ultralytics框架进行定向边界框对象检测
- 参考文献
前言
- 由于本人水平有限,难免出现错漏,敬请批评改正。
- 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
- 基于DETR的人脸伪装检测
- YOLOv7训练自己的数据集(口罩检测)
- YOLOv8训练自己的数据集(足球检测)
- YOLOv5:TensorRT加速YOLOv5模型推理
- YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
- 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
- YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
- YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
- Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
- YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
- 使用Kaggle GPU资源免费体验Stable Diffusion开源项目
相关介绍
- YOLOv8是YOLO系列实时目标检测器的最新版本,在准确性和速度方面提供了尖端的性能。基于以前的YOLO版本的进步,YOLOv8引入了新的功能和优化,使其成为各种应用中各种目标检测任务的理想选择。
- YOLOv8官方文档:https://docs.ultralytics.com/
- 定向对象检测比对象检测更进一步,引入了额外的角度来更准确地定位图像中的对象。
- 定向对象检测器的输出是一组旋转的边界框,精确包围图像中的对象,以及每个框的类标签和置信度分数。当您需要识别场景中感兴趣的对象,但不需要知道对象的确切位置或其确切形状时,对象检测是一个不错的选择。
前提条件
- 熟悉Python
实验环境
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.6.0
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
tensorboard>=2.4.1
pandas>=1.1.4
seaborn>=0.11.0
安装环境
pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快
项目地址
- 官方YOLOv8源代码地址:https://github.com/ultralytics/ultralytics.git
Linux
git clone https://github.com/ultralytics/ultralytics.git
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.
Windows
请到
https://github.com/ultralytics/ultralytics.git
网站下载源代码zip压缩包。
使用Ultralytics框架进行定向边界框对象检测
yolo obb predict model=yolov8n-obb.pt source=images/plane.png
参考文献
[1] YOLOv8 源代码地址:https://github.com/ultralytics/ultralytics.git.
[2] YOLOv8 Docs:https://docs.ultralytics.com/
[3] https://docs.ultralytics.com/tasks/obb/
- 由于本人水平有限,难免出现错漏,敬请批评改正。
- 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
- 基于DETR的人脸伪装检测
- YOLOv7训练自己的数据集(口罩检测)
- YOLOv8训练自己的数据集(足球检测)
- YOLOv5:TensorRT加速YOLOv5模型推理
- YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
- 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
- YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
- YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
- Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
- YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
- 使用Kaggle GPU资源免费体验Stable Diffusion开源项目