ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模

2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更是显现了OpenAI旨在构建AI生态的野心。因此,

为了帮助近红外光谱分析领域的广大科研人员更加熟练地掌握ChatGPT4.0在近红外光谱数据分析、定性/定量分析模型代码自动生成等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,本次教程,旨在帮助学员掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、自编码器、U-Net等)的基本原理及Python、Pytorch代码实现方法。

本次教程采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解ChatGPT4.0的最新功能,以及经典人工智能方法在近红外光谱数据分析与定性/定量建模时需要掌握的经验及技巧。

第一章 ChatGPT4入门基础

1、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

2、ChatGPT对话初体验(注册与充值、购买方法)

3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别

4、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

5、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

6、GPT Store简介

7、案例演示与实操练习

第二章 ChatGPT4 提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于模板的ChatGPT提示词优化

4、利用ChatGPT4 及插件优化提示词

5、通过promptperfect.jina.ai优化提示词

6、利用ChatGPT4 及插件生成提示词

7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、案例演示:利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行

11、实操练习

第三章 ChatGPT4助力信息检索与总结分析

1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT4 及插件实现联网检索文献

3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、利用ChatGPT4 及插件总结Youtube视频内容

5、案例演示与实操练习

第四章 ChatGPT4助力论文写作与投稿

1、利用ChatGPT4自动生成论文的总体框架

2、利用ChatGPT4完成论文翻译(指定翻译角色和翻译的领域、给一些背景提示)

3、利用ChatGPT4实现论文语法校正

4、利用ChatGPT4完成段落结构及句子逻辑润色

5、利用ChatGPT4完成论文评审意见的撰写与回复

6、案例演示与实操练习

第五章 ChatGPT4助力Python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、第三方模块的安装与使用

5、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

6、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

7、实操练习

第六章 ChatGPT4助力近红外光谱数据预处理

1、近红外光谱数据标准化与归一化(为什么需要标准化与归一化?)

2、近红外光谱数据异常值、缺失值处理

3、近红外光谱数据离散化及编码处理

4、近红外光谱数据一阶导数与二阶导数

5、近红外光谱数据去噪与基线校正

6、近红外光谱数据预处理中的ChatGPT提示词模板讲解

7、实操练习

第七章 ChatGPT4助力多元线性回归近红外光谱分析

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、多元线性回归中的ChatGPT提示词模板讲解

7、案例演示:近红外光谱回归拟合建模

第八章 ChatGPT4助力BP神经网络近红外光谱分析

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、训练集和测试集划分? BP神经网络常用激活函数有哪些?如何查看模型参数?

3、BP神经网络参数(隐含层神经元个数、学习率)的优化(交叉验证)

4、值得研究的若干问题(欠拟合与过拟合、评价指标的设计、样本不平衡问题等)

5、BP神经网络的Python代码实现

6、BP神经网络中的ChatGPT提示词模板讲解

7、案例演示: 1)近红外光谱回归拟合建模;2)近红外光谱分类识别建模

第九章 ChatGPT4助力支持向量机(SVM)近红外光谱分析

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题? SVM的启发:样本重要性排序及样本筛选)

3、SVM的Python代码实现

4、SVM中的ChatGPT提示词模板讲解

5、案例演示:近红外光谱分类识别建模

第十章 ChatGPT4助力决策树、随机森林、Adaboost、XGBoost和LightGBM近红外光谱分析

1、决策树的基本原理(什么是信息熵和信息增益?ID3和C4.5算法的区别与联系)

2、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

4、Bagging与Boosting集成策略的区别

5、Adaboost算法的基本原理

6、Gradient Boosting Decision Tree (GBDT)模型的基本原理

7、XGBoost与LightGBM简介

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

9、决策树、随机森林、Adaboost、XGBoost与LightGBM的ChatGPT提示词模板讲解

10、案例演示:近红外光谱回归拟合建模

第十一章 ChatGPT4助力遗传算法近红外光谱分析

1、群优化算法概述

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、遗传算法中的ChatGPT提示词模板讲解

5、案例演示:基于二进制遗传算法的近红外光谱波长筛选

第十二章 ChatGPT4助力近红外光谱变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS、特征选择算法的Python代码实现

5、PCA、PLS、特征选择算法中的ChatGPT提示词模板讲解

6、案例演示:
1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

第十三章 ChatGPT4助力Pytorch入门基础

1、深度学习框架概述(PyTorch、Tensorflow、Keras等)

2、PyTorch简介(动态计算图与静态计算图机制、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)

4、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

5、张量(Tensor)的常用属性与方法(dtype、device、requires_grad、cuda等)

6、张量(Tensor)的创建(直接创建、从numpy创建、依据概率分布创建)

7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

8、张量(Tensor)的索引与切片

9、PyTorch的自动求导(Autograd)机制与计算图的理解

10、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

第十四章 ChatGPT4助力卷积神经网络近红外光谱分析

1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络参数调试技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

4、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

5、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

6、卷积神经网络中的ChatGPT提示词模板讲解

7、案例演示:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)基于卷积神经网络的近红外光谱模型建立

第十五章 ChatGPT4助力近红外光谱迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

5、案例演示:基于迁移学习的近红外光谱的模型传递(模型移植)

第十六章 ChatGPT4助力自编码器近红外光谱分析

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、自编码器中的ChatGPT提示词模板讲解

5、案例演示:1)基于自编码器的近红外光谱数据预处理

             2)基于自编码器的近红外光谱数据降维与有效特征提取

第十七章 ChatGPT4助力U-Net多光谱图像语义分割

1、语义分割(Semantic Segmentation)简介

2、U-Net模型的基本原理

3、语义分割、U-Net模型中的ChatGPT提示词模板讲解

4、案例演示:基于U-Net的多光谱图像语义分割

第十八章 ChatGPT4助力深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)等原理讲解

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词模板讲解

6、案例演示

第十九章 复习与答疑讨论

1、课程复习与总结、资料分享(图书、在线课程资源、源代码等)

2、科研与创新方法总结(如何利用Google Scholar、Sci-Hub、ResearchGate等工具查阅文献资料、配套的数据和代码?如何更好地撰写论文的Discussion部分?)

3、答疑与讨论(大家提前把问题整理好)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/612086.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安全漏洞周报(2024.01.01-2023.01.08)

漏洞速览 ■ 用友CRM系统存在逻辑漏洞 漏洞详情 1. 用友CRM系统存在逻辑漏洞 漏洞介绍: 某友CRM系统是一款综合性的客户关系管理软件,旨在帮助企业建立和维护与客户之间的良好关系。它提供了全面的功能,包括销售管理、市场营销、客户服…

1.10 Unity中的数据存储 XML

一、XML 1.介绍 XML是一个文档后缀名是*.xmlXML是一个特殊格式的文档XML是可扩展的标记性语言XML是Extentsible Markup Language的缩 写XML是由万维网联盟(W3C)创建的标记语言,用于定义编码人类和机器可以读取的文档的语法。它通过使用定义文档结构的标签以及如何…

代码随想录算法训练营第二十一天| 回溯 216. 组合总和 III 17. 电话号码的字母组合

216. 组合总和 III 可以参考77.组合中关于选取数组的相关操作。 递归函数的返回值以及参数:一般为void类型 递归函数终止条件:path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,然后当n为0的时候&#xff0…

Maven报错:Malformed \uxxxx encoding 解决办法

maven构建出现这个Malformed \uxxxx encoding问题,应该是maven仓库里面有脏东西进入了! 解决: 将仓库中的resolver-status.properties文件全部干掉。 我使用的everything工具全局搜索resolver-status.properties文件,然后Ctrla,再…

Nodejs 第三十一章(响应头和请求头)

响应头 HTTP响应头(HTTP response headers)是在HTTP响应中发送的元数据信息,用于描述响应的特性、内容和行为。它们以键值对的形式出现,每个键值对由一个标头字段(header field)和一个相应的值组成。 例如…

第三十九级台阶

解题思路: 本题运用递归的思想,每走一步可以上一个或者两个台阶,一开始是左脚最后是右脚,所以走的总步数应该为偶数,最后跨过的台阶数应该等于39。 解题代码: public class disnashijiujitaijie {static i…

03. BI - 详解机器学习神器 XGBoost

本文专辑 : 茶桁的AI秘籍 - BI篇 原文链接: https://mp.weixin.qq.com/s/kLEg_VcxAACy8dH35kK3zg 文章目录 集成学习XGBoost Hi,你好。我是茶桁。 学习总是一个循序渐进的过程,之前两节课的内容中,咱们去了解了LR和SVM在实际项目中是如何使…

100V耐压 LED恒流驱动芯片 SL2516D兼容替换LN2516车灯照明芯片

SL2516D LED恒流驱动芯片是一款专为LED照明设计的高效、高精度恒流驱动芯片。与LN2516车灯照明芯片兼容,可直接替换LN2516芯片,为LED车灯照明提供稳定、可靠的电源解决方案。 一、SL2516D LED恒流驱动芯片的特点 1. 高效率:SL2516D采用先进的…

HarmonyOS4.0系统性深入开发17进程模型概述

进程模型概述 HarmonyOS的进程模型: 应用中(同一包名)的所有UIAbility运行在同一个独立进程中。WebView拥有独立的渲染进程。 基于HarmonyOS的进程模型,系统提供了公共事件机制用于一对多的通信场景,公共事件发布者…

深度解析-Java语言的未来

深度解析-Java语言的未来,文末有我耗时一个月,问遍了身边的大佬,零基础自学Java的路线,适用程序员入门&进阶,Java学习路线,2024新版最新版。 文章目录 Q1 - 能否自我介绍下? Q2 - Java语…

设计模式——抽象工厂模式(Abstract Factory Pattern)

概述 抽象工厂模式的基本思想是将一些相关的产品组成一个“产品族”,由同一个工厂统一生产。在工厂方法模式中具体工厂负责生产具体的产品,每一个具体工厂对应一种具体产品,工厂方法具有唯一性,一般情况下,一个具体工厂…

数据结构与算法之美学习笔记:46 | 概率统计:如何利用朴素贝叶斯算法过滤垃圾短信?

目录 前言算法解析总结引申 前言 本节课程思维导图: 上一节我们讲到,如何用位图、布隆过滤器,来过滤重复的数据。今天,我们再讲一个跟过滤相关的问题,如何过滤垃圾短信? 垃圾短信和骚扰电话,我…

docker安装nodejs,并更改为淘宝源

拉取官方 Node.js 镜像 docker pull node:latest创建 Dockerfile,并更改 NPM 下载源为淘宝源,设置为全局持久化 # 使用最新版本的Node.js作为基础镜像 FROM node:latest# 设置工作目录为/app WORKDIR /app # 更改 NPM 下载源为淘宝源,并设置…

c++学习笔记-STL案例-机房预约系统1-需求分析

1 机房预约系统需求 1.1 简单介绍 学校有几个规格不同的机房,由于使用经常出现“撞车”现象,现在开发一套预约系统,解决这一问题。 1.2 身份介绍 分别有三种身份使用该系统 学生代表:申请使用机房教师:审核学生的…

从单细胞数据分析的最佳实践看R与Python两个阵营的博弈

R与Python,在生物信息学领域的博弈异常激烈。许多生信分析,两个阵营都发展出了自己的方法,比如单细胞数据分析,R有Seurat,Python就有Scanpy。这些层出不穷的方法不断地吸引着吃瓜群众的眼球,同时也让人患上…

Qt 6之六:Qt Designer介绍

Qt 6之六:Qt Designer介绍 Qt Designer是一个可视化的用户界面设计工具,用于创建Qt应用程序的用户界面,允许开发人员通过拖放和布局来设计和创建GUI界面。 Qt 6之一:简介、安装与简单使用 https://blog.csdn.net/cnds123/articl…

Linux 文件(夹)权限查看

命令 : ls -al ls -al 是一个用于列出指定目录下所有文件和子目录的命令,包括隐藏文件和详细信息。其中,-a 选项表示显示所有文件,包括以 . 开头的隐藏文件,-l 选项表示以列表的形式显示文件的详细信息。 本例中:drwxrwxr-x 为权限细节。 权限细节(Permission detail…

DePIN:重塑物理资源网络的未来

点击查看TechubNews更多相关推荐 一、DePIN:物理资源的新整合方式 Depin赛道的项目如雨后春笋般涌现,为市场注入了新的活力。作为先行者,Coinmanlabs已经深入布局Depin赛道,其中最引人注目的项目当属Grass。 什么是DePIN DePIN…

uniapp在web端怎么使用svg图标呢

在图标库中添加好项目用到的图标,点击symbol点击生成在线链接 点击生成的在线链接,此时会跳转到一个新窗口,是一个js文件 复制这个js文件的内容 然后在uniapp中新建svg.js文件,把从上面复制的代码粘贴到这个svg.js中 在main.js中引…

JAVA基础学习笔记-day16-网络编程

JAVA基础学习笔记-day16-网络编程 1. 网络编程概述1.1 软件架构1.2 网络基础 2. 网络通信要素2.1 如何实现网络中的主机互相通信2.2 通信要素一:IP地址和域名2.2.1 IP地址2.2.2 域名 2.3 通信要素二:端口号2.4 通信要素三:网络通信协议 3. 谈…