【Java集合篇】 ConcurrentHashMap在哪些地方做了并发控制

在这里插入图片描述

ConcurrentHashMap在哪些地方做了并发控制

  • ✅典型解析
  • ✅初始化桶阶段
    • 🟢桶满了会自动扩容吗
    • 🟠自动扩容的时间频率是多少
  • ✅put元素阶段
  • ✅扩容阶段
  • 🟠 拓展知识仓
    • 🟢ConcurrentSkipListMap和ConcurrentHashMap有什么区别
    • ☑️简单介绍一下什么是跳表
      • 🟢跳表和普通链表有什么区别
    • 🟡为什么跳表比普通链表更快
      • 🟠跳表的优点和缺点是什么
    • ✅SynchronizedList和Vector的区别


✅典型解析


对于JDK1.8来说,如果用一句话来讲的话,ConcurrentHashMap是通过synchronized 和CAS自旋保证的线程安全,要想知道ConcurrentHashMap是如何加锁的,就要知道HashMap在哪些地方会导致线程安全问题,如初始化桶数组阶段和设置桶,插入链表,树化等阶段,都会有并发问题。


解决这些问题的前提,就要知道到底有多少线程在对map进行写入操作,这里ConcurrentHashMap通过sizeCtl变量完成,如果其为负数,则说明有多线程在操作,且 Math.abs(sizeCtl)即为线程的数目。


✅初始化桶阶段


如果在此阶段不做并发控制,那么极有可能出现多个线程都去初始化桶的问题,导致内存浪费。所以Map在此外采用自旋操作和CAS提作,如果此时没有线程初始化,则去初始化,否则当前线程让出CPU时间片,等待下一次唤醒,源码如下:


while ((tab = table) == null  tab.length == 0)  {if ((sc = sizeCt1) < 0) {Thread.yield(); // lost initialization race; just spin}else if (U.compareAndSetInt(thisSIZECTL,sc,-1))  {try {if ((tab = table) == null || tab.length == 0) {//省略}} finally {sizeCtl = sc;}break;}
}

随着时间的推移,ConcurrentHashMap可能需要重新哈希(rehashing)来调整桶的数量以适应数据的变化。这通常发生在添加或删除元素时,如果发现当前桶的数量不足以容纳所有元素,就会触发重新哈希过程。


🟢桶满了会自动扩容吗


当ConcurrentHashMap中的桶满了,它会自动进行扩容。这个过程是自动的,由集合自动完成的。具体的扩容阈值是集合的当前数组长度乘以负载因子。负载因子在ConcurrentHashMap中的默认值是0.75。当某个桶中的实体数量超过这个阈值时,就会触发扩容操作。扩容操作会创建新的桶,并将原有数据重新散列到新的桶中,以确保数据始终是均匀分布的。在ConcurrentHashMap中,扩容操作通过分段锁实现,这意味着扩容只需要锁定当前段,不需要锁定整个表,从而不会影响其他线程的读写操作。总的来说,ConcurrentHashMap的扩容机制既简单又高效。


🟠自动扩容的时间频率是多少


在ConcurrentHashMap中,自动扩容的时间频率是由数据插入和读取的频率决定的。当某个桶中的实体数量超过设定的阈值时,就会触发扩容操作。这个阈值是集合的当前数组长度乘以负载因子,默认负载因子是0.75。因此,当数据频繁插入或读取时,如果超过了阈值,就会触发扩容操作。


注意:ConcurrentHashMap的扩容操作是自动的,不需要手动触发。扩容操作通过重新散列原有数据到新的桶中来实现,这个过程是线程安全的,不会影响其他线程的读写操作。


由于ConcurrentHashMap的扩容机制是根据数据插入和读取的频率动态调整的,因此无法确定具体的扩容时间频率。扩容的时间频率取决于实际的使用情况,例如数据的插入和读取频率,以及数据的分布情况等因素。


我们来看一个代码片段Demo,将用Java代码详细解释ConcurrentHashMap的自动扩容机制:


首先,我们先创建一个简单的ConcurrentHashMap实例:


import java.util.concurrent.ConcurrentHashMap;  
/**
*  ConcurrentHashMap实例
*/  
public class ConcurrentHashMapDemo {  public static void main(String[] args) {  ConcurrentHashMap<Integer, String> map = new ConcurrentHashMap<>();  }  
}

ConcurrentHashMap中,桶的数量是通过数组长度来表示的。默认情况下,桶的数量是2的N次方,这样可以更有效地利用位运算进行索引计算。当我们向ConcurrentHashMap中插入元素时,它会根据元素的hash值计算出对应的桶索引,并将元素存储在该桶的链表中。


当某个桶中的元素数量超过设定的阈值时,就会触发扩容操作。扩容操作的实现方式是创建一个新的桶数组,并将原有数据重新散列到新的桶中。下面是一个简单的扩容示例:


import java.util.concurrent.ConcurrentHashMap;  public class ConcurrentHashMapDemo {  public static void main(String[] args) {  ConcurrentHashMap<Integer, String> map = new ConcurrentHashMap<>();  // 添加元素,触发扩容操作  for (int i = 0; i < 1000; i++) {  map.put(i, "value" + i);  }  // 输出桶的数量和每个桶的元素数量  System.out.println("桶数量:" + map.capacity());  for (int i = 0; i < map.capacity(); i++) {  System.out.println("桶" + i + "de元素数量:" + map.segmentFor(i).hashTable.length);  }  }  
}

上面示例中,通过循环向ConcurrentHashMap中添加了1000个元素。由于默认的负载因子是0.75,当元素数量超过数组长度的0.75倍时,就会触发扩容操作。扩容操作会创建一个新的桶数组,并将原有数据重新散列到新的桶中。我们可以使用map.capacity()方法获取当前桶的数量,并通过map.segmentFor(i).hashTable.length获取每个桶的元素数量。输出结果将会显示桶的数量和每个桶的元素数量。


关于这个知识点不明白,可以去专栏里自行查阅,有讲。


在这里我先方一个链接:【Java集合篇】为什么HashMap的Cap是2^n,如何保证?


🟡注意,在ConcurrentHashMap中,扩容操作是通过分段锁实现的。这意味着扩容只需要锁定当前段,不需要锁定整个表,从而不会影响其他线程的读写操作。这种机制使得ConcurrentHashMap能够支持高并发访问,并且能够随着数据的变化自动调整桶的数量,以适应实际的使用情况。


✅put元素阶段


如果hash后发现桶中没有值,则会直接采用CAS插入并且返回


如果发现桶中有值,则对流程按照当前的桶节点为维度进行加锁,将值插入链表或者红黑树中,源码如下:


//省略....//如果当前桶节点为nu11,直接CAS插入else if ((f = tabAt(tab,i = (n - 1) & hash)) == null) {if (casTabAt(tab,i,null, new Node<K,V>(hash, key,value))) {break;                // no lock when adding to empty bin}
} else { //省略....//如果桶节点不为空,则对当前桶进行加锁V oldVal = null:synchronized (f) {}
}

✅扩容阶段


多线程最大的好处就是可以充分利用CPU的核数,带来更高的性能,所以ConcurrentHashMap并没有一味的通过CAS或者锁去限制多线程,在扩容阶段,ConcurrentHashMap就通过多线程来加加速扩容。


在分析之前,我们需要知道两件事情:


1 . ConcurrentHashMap通过ForwardingNode来记录当前已经桶是否被迁移,如果oldTable[i] instance0f ForwardingNode则说明处于节点的桶已经被移动到newTable中了。它里面有一个变量nextTable,指向的是下一次扩容后的table。


2 . transterindex 记录了当前扩容的桶索引,最开始为oldlale.ength,它给下一个线程指定了要扩容的节点。


得知到这两点后,我们可以梳理出如下扩容流程:


1 . ConcurrentHashMap 通过ForwardingNode来记录当前已经桶是否被迁移,如果oldTable[i] instanceof ForwardingNode 则说明处于节点的桶已经被移动到newTable中了。它里面有一个变量nextTable,指向的是下一次扩容后的table。


2 . transterindex 记录了当前扩容的桶索引,最开始为oldlale.ength,它给下一个线程指定了要容的节点。


3 . 再将当前线程扩容后的索引赋值给 transferlndex ,譬如,如果transferlndex原来是32,那么赋值之后transferlndex应该变为16,这样下一个线程就可以从16开始扩容了。这里有一个小问题,如果两个线程同时拿到同一段范围之后,该怎么处理? 答案是ConcurrentHashMap会通过CAS对transferlndex进行设置,只可能有一个成功,所以就不会存在上面的问题


之后就可以对真正的扩容流程进行加锁操作了。


🟠 拓展知识仓


🟢ConcurrentSkipListMap和ConcurrentHashMap有什么区别


ConcurrentSkipListMap 是一个内部使用跳表,并且支持排序和并发的一个Map,是线程安全的。一般很少会被用到,也是一个比较偏门的数据结构。


首先,我们来看看ConcurrentHashMap:


import java.util.concurrent.ConcurrentHashMap;public class ConcurrentHashMapDemo {public static void main(String[] args) {ConcurrentHashMap<Integer, String> map = new ConcurrentHashMap<>();// 添加元素for (int i = 0; i < 1000; i++) {map.put(i, "value" + i);}// 查询元素for (int i = 0; i < 1000; i++) {String value = map.get(i);System.out.println("Key " + i + " maps to value " + value);}}
}

代码中,创建了一个ConcurrentHashMap实例并向其中添加了1000个元素。我们可以通过get()方法来查询元素的值。由于ConcurrentHashMap使用了分段锁技术,多个线程可以同时访问不同的段,从而实现高并发访问。

接下来,我们来看看ConcurrentSkipListMap:


import java.util.concurrent.ConcurrentSkipListMap;public class ConcurrentSkipListMapDemo {public static void main(String[] args) {ConcurrentSkipListMap<Integer, String> map = new ConcurrentSkipListMap<>();// 添加元素for (int i = 0; i < 1000; i++) {map.put(i, "value" + i);}// 查询元素for (int i = 0; i < 1000; i++) {String value = map.get(i);System.out.println("Key " + i + " maps to value " + value);}}
}

代码中,我们创建了一个ConcurrentSkipListMap实例并向其中添加了1000个元素。我们同样可以通过get()方法来查询元素的值。ConcurrentSkipListMap使用了跳表数据结构,可以保证元素的有序性,并且查询效率较高。与ConcurrentHashMap相比,它在插入和删除操作上具有更高的开销,但查询效率更高。


ConcurrentSkipListMap 和 ConcurrentHashMap 的主要区别:


1 . 底层实现方式不同。ConcurrentSkipListMap底层基于跳表。ConcurrentHashMap底层基于Hash桶和红黑树


2 . ConcurrentHashMap不支持排序。ConcurrentSkipListMap支持排序。


在这里插入图片描述


☑️简单介绍一下什么是跳表


跳表(Skip List)是一种数据结构,它可以在有序链表的基础上增加多级索引,通过索引来实现快速查找。跳表全称为跳跃列表,它允许快速查询、插入和删除一个有序连续元素的数据链表。


跳表实质上是一种可以进行二分查找的有序链表,它在原有的有序链表上面增加了多级索引,通过索引来实现快速查找。索引的层级通过随机技术决定,元素应该在哪几层,其中的搜索、插入、删除操作的时间均为O(logn),因此跳表的平均查找和插入时间复杂度都是O(logn)。


相比之下,在一个有序数组或链表中进行插入/删除操作的时间为O(n),最坏情况下为O(n)。而跳表的原理非常简单,目前在Redis和LevelDB中都有用到。


🟢跳表和普通链表有什么区别


跳表和普通链表的区别主要在于数据结构的设计和查询、插入、删除操作的性能。


首先,普通链表是线性数据结构,每个节点包含数据域和指针域,指针域指向下一个节点。普通链表中的节点只有一个指针,只能顺序扫描,查询效率相对较低,需要遍历链表直到找到目标节点。


而跳表则通过增加维度来提升查询效率。跳表中的节点有多层索引,每层索引都有一个指针指向下一层索引,最下一层是数据域。跳表的查询、插入、删除操作可以在O(logn)的时间复杂度内完成,因为可以通过多级索引快速定位到目标节点。


其次,普通链表的节点只有一个指针,只能顺序扫描,插入和删除操作需要移动大量节点,时间复杂度为O(n)。而跳表的插入和删除操作可以在O(logn)的时间复杂度内完成,因为可以通过多级索引快速定位到目标节点,然后调整指针即可。


最后,普通链表的查询、插入、删除操作需要遍历链表元素,空间复杂度为O(n)。而跳表的查询、插入、删除操作可以在O(logn)的时间复杂度内完成,因此空间复杂度也为O(logn)。


总之,跳表通过增加维度来提升查询效率,同时减少插入和删除操作的时间复杂度。相比普通链表,跳表在空间和时间效率上都有更好的表现。


🟡为什么跳表比普通链表更快


跳表比普通链表更快的原因在于其数据结构的设计和查询、插入、删除操作的实现方式。


首先,跳表通过在链表中添加多级索引,实现了快速查找。在跳表中,每一层索引都是前一层的子集,且每一层索引都是有序的。这样,在查找元素时,可以从最高层索引开始,逐层向下查找,直到找到目标元素或到达最底层。这种分层查找的方式大大减少了搜索范围,提高了查询效率。


其次,跳表的插入和删除操作也更加高效。在普通链表中,插入和删除操作需要移动大量节点,时间复杂度为O(n)。而在跳表中,插入和删除操作可以在O(logn)的时间复杂度内完成。这是因为跳表通过多级索引快速定位到目标节点,然后调整指针即可。这种设计方式减少了插入和删除操作的时间复杂度,提高了数据操作的效率。


跳表通过增加多级索引和优化查询、插入、删除操作的实现方式,提高了空间和时间效率,因此比普通链表更快。


🟠跳表的优点和缺点是什么


跳表的优点主要包括

  1. 查询效率高:跳表通过多级索引实现了快速查找,查询时间复杂度为O(logn),比普通链表更高效。
  2. 插入和删除操作效率高:跳表的插入和删除操作可以在O(logn)的时间复杂度内完成,比普通链表更快。
  3. 支持有序性:跳表可以保证元素的有序性,因为每一层索引都是有序的。
  4. 空间效率高:跳表的空间复杂度为O(logn),比普通链表更节省空间。

跳表存在缺点

  1. 实现复杂度较高:跳表的实现比普通链表更复杂,需要维护多级索引和指针。
  2. 代码实现难度大:由于跳表的实现较为复杂,因此代码实现难度较大。
  3. 需要额外空间:跳表需要额外的空间来存储索引和指针信息。

跳表具有查询效率高、插入和删除操作效率高、支持有序性和空间效率高等优点,但也存在实现复杂度高、代码实现难度大和需要额外空间等缺点。在实际应用中,需要根据具体需求选择是否使用跳表


✅SynchronizedList和Vector的区别


Vector是 java.util 包中的一个类。SynchronizedListjava.util.Collections中的一人静态内部类,在多线程的场景中可以直接使用Vector类,也可以使用Collections.synchronizedList(List list)方法来返回一个线程安全的List。


1 . 如果使用add方法,那么他们的扩容机制不一样


2 . SynchronizedList可以指定锁定的对象。即锁粒度是同步代码块。而Vector的锁粒度是同步方法


3 . SynchronizedList有很好的扩展和兼容功能。他可以将所有的List的子类转成线程安全的类


4 . 使用SynchronizedList的时候,进行遍历时要手动进行同步处理


5 . SynchronizedList可以指定锁定的对象。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/611063.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决录制的 mp4 视频文件在 windows 无法播放的问题

解决录制的 mp4 视频文件在 windows 无法播放的问题 kazam 默认录制保存下来的 mp4 视频文件在 windows 中是无法直接使用的&#xff0c;这是由于视频编码方式的问题。解决办法&#xff1a; 首先安装 ffmeg 编码工具&#xff1a; sudo apt-get install ffmpeg 然后改变视频的…

BIND DNS 自定义zabbix监控

一、DNS统计计数器 Bind9可以使用rndc stats 命令将相关DNS统计信息存储到工作目录下&#xff0c;默认位置在&#xff1a; statistics-file "/var/named/data/named_stats.txt"; 每当名称服务器执行rndc stats命令&#xff0c;都会统计在统计信息文件最后附加一…

极少数据就能微调大模型,一文详解LoRA等方法的运作原理

原文&#xff1a;极少数据就能微调大模型&#xff0c;一文详解LoRA等方法的运作原理 最近和大模型一起爆火的&#xff0c;还有大模型的微调方法。 这类方法只用很少的数据&#xff0c;就能让大模型在原本表现没那么好的下游任务中“脱颖而出”&#xff0c;成为这个任务的专家…

第87讲:XtraBackup备份工具的核心技术要点及全库备份、恢复案例

文章目录 1.XtraBackup备份工具的简介2.XBK备份工具的安装3.XBK备份工具的使用语法4.XBK备份前的准备5.使用XBK对全库进行备份5.1.XBK备份全库数据的语法格式5.2.使用XBK进行全库备份5.3.查看XBK备份的数据文件5.4.备份过程中生产的XBK文件 6.模拟故障案例并使用XBK恢复备份的数…

openssl3.2 - 官方dmeo学习 - server-arg.c

文章目录 openssl3.2 - 官方dmeo学习 - server-arg.c概述笔记备注END openssl3.2 - 官方dmeo学习 - server-arg.c 概述 TLS服务器, 等客户端来连接; 如果客户端断开了, 通过释放bio来释放客户端socket, 然后继续通过bio读来aceept. 笔记 对于开源工程, 不可能有作者那么熟悉…

Python操作excel-读取、表格填充颜色区分

1.场景分析 遇到一个需要读取本地excel数据&#xff0c;处理后打入到数据库的场景&#xff0c;使用java比较重&#xff0c;python很好的解决了这类问题 2.重难点 本场景遇到的重难点在于&#xff1a; 需要根据表格内的背景颜色对数据进行筛选 读取非默认Sheet 总是出现Value…

day-05 删除子串后的字符串最小长度

思路 通过不断地检查是否含有"AB"或"CD"&#xff0c;如果有则将其从字符串中删除&#xff0c;直到"AB"或"CD"都不存在时&#xff0c;返回字符串的长度 解题方法 //检测是否有"AB" for(int i0;i<len-1;i){ if(s.charAt(i…

Python画国旗

前言 今天&#xff0c;我们来用turtle库来绘制国旗 一、美国国旗 国旗的形状是长方形;国旗的长宽之比为19:10&#xff0c;美国国旗由红、白、蓝三色组成;画面格局由两部分组成&#xff0c;旗的左上方蓝底上排列着50颗白色的星&#xff0c;6颗一排与5颗一排相间排列&#xff…

创建一个郭德纲相声GPTs

前言 在这篇文章中&#xff0c;我将分享如何利用ChatGPT 4.0辅助论文写作的技巧&#xff0c;并根据网上的资料和最新的研究补充更多好用的咒语技巧。 GPT4的官方售价是每月20美元&#xff0c;很多人并不是天天用GPT&#xff0c;只是偶尔用一下。 如果调用官方的GPT4接口&…

K8S存储卷和数据卷

容器内的目录和宿主机的目录进行挂载 容器在系统上的生命周期是短暂的&#xff0c;delete&#xff0c;k8s用控制器创建的pod&#xff0c;delete相当于重启&#xff0c;容器的状态也会恢复到初始状态&#xff0c;一旦回到初始状态&#xff0c;所有的后天编辑的文件都会消失 容器…

年轻人2023消费图鉴,媒介盒子为你揭秘

回顾近一年的消费&#xff0c;发现大家差不多都是“扣扣嗖嗖的花了很多钱”&#xff0c;如果总结2023年的大众消费关键词&#xff0c;那一定是更加“理性”&#xff0c;据艾瑞咨询《2023年中国消费者洞察白皮书》显示&#xff0c;“精细化”成为2023年的消费关键词&#xff0c;…

十二、QProgressBar的简单使用与样式优化(Qt5 GUI系列)

目录 一、设计需求 二、实现代码 三、代码解析 四、总结 五、扩展(自定义QProgressBar样式) 一、设计需求 在很多应用程序中&#xff0c;在执行费时操作时都会展示一个进度条来展示操作进行的进度。常见的场景&#xff0c;如&#xff1a;拷贝操作、安装操作以及卸载操作。…

Unity组件开发--AB包打包工具

1.项目工程路径下创建文件夹&#xff1a;ABundles 2.AB包打包脚本&#xff1a; using System.Collections.Generic; using System.IO; using UnityEditor; using UnityEditor.SceneManagement; using UnityEngine; using UnityEngine.SceneManagement;public class AssetBundle…

Vue入门三(表单控制|购物车案例|v-model进阶|与后端交互|计算属性|监听属性|Vue生命周期)

文章目录 一、表单控制二、购物车案例三、v-model进阶四、与后端交互跨域问题解决&#xff0c;三种交互方法跨域问题详解1-CORS&#xff1a;后端代码控制&#xff0c;上面案例采用的方式1) 方式一&#xff1a;后端添加请求头2) 方式二&#xff1a;编写中间件3) 方式三&#xff…

代理IP连接不上?网速过慢?自查与解决方法

当您使用代理时&#xff0c;您可能会遇到不同的代理错误代码显示代理IP连不通、访问失败、网速过慢等种种问题。 在本文中中&#xff0c;我们将讨论您在使用代理IP时可能遇到的常见错误、发生这些错误的原因以及解决方法。 一、常见代理服务器错误 当您尝试访问网站时&#…

Mysql系列-1.Mysql基本使用

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理、分布式技术原理、数据库技术&#x1f525;如果感觉博主的文章还不错的…

RT-Thread基于AT32单片机的485应用开发(二)

在上篇RT-Thread基于AT32单片机的485应用开发&#xff08;一&#xff09;中实现了RS485收发&#xff0c;但总觉得效率不高&#xff0c;函数封装也不完善。考虑到RS485总线应用都是主从式结构&#xff0c;比如工业领域常用的Modbus协议&#xff0c;都是以帧为单位进行收发&#…

【python】内存管理和数据类型问题

一、内存管理 Python有一个自动内存管理机制&#xff0c;但它并不总是按照期望的方式工作。例如&#xff0c;如果创建了一个大的列表或字典&#xff0c;并且没有删除它&#xff0c;那么这个对象就会一直占用内存&#xff0c;直到Python的垃圾回收器决定清理它。为了避免这种情…

【Verilog】运算符

系列文章 数值&#xff08;整数&#xff0c;实数&#xff0c;字符串&#xff09;与数据类型&#xff08;wire、reg、mem、parameter&#xff09; 系列文章算术运算符关系运算符相等关系运算符逻辑运算符按位运算符归约运算符移位运算符条件运算符连接和复制运算符 算术运算符 …