面试题:什么是雪花算法?啥原理?

SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。

其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 ID,12 bit 作为序列号。
在这里插入图片描述

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

  • 第一个部分是 1 个 bit:0,这个是无意义的。
  • 第二个部分是 41 个 bit:表示的是时间戳。
  • 第三个部分是 5 个 bit:表示的是机房 ID,10001。
  • 第四个部分是 5 个 bit:表示的是机器 ID,1 1001。
  • 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 ID 都是正数,所以第一个 bit 统一都是 0。

41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以表示 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

10 bit:记录工作机器 ID。

代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

但是 10 bit 里 5 个 bit 代表机房 ID,5 个 bit 代表机器 ID。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。

12 bit:这个是用来记录同一个毫秒内产生的不同 ID。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 ID。

简单来说,你的某个服务假设要生成一个全局唯一 ID,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 ID。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 ID = 17,机器 ID = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 ID,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 ID,还有 5 个 bit 设置上机器 ID。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 ID 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 ID 就出来了,类似于:

图片

这个算法可以保证,一个机房的一台机器上,在同一毫秒内生成了一个唯一的 ID。可能一个毫秒内会生成多个 ID,但是有最后 12 个 bit 的序号来区分开来。

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 ID。

SnowFlake 算法的实现代码如下:

public class IdWorker {//因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。//机器ID  2进制5位  32位减掉1位 31个private long workerId;//机房ID 2进制5位  32位减掉1位 31个private long datacenterId;//代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个private long sequence;//设置一个时间初始值    2^41 - 1   差不多可以用69年private long twepoch = 1585644268888L;//5位的机器idprivate long workerIdBits = 5L;//5位的机房idprivate long datacenterIdBits = 5L;//每毫秒内产生的id数 2 的 12次方private long sequenceBits = 12L;// 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内private long maxWorkerId = -1L ^ (-1L << workerIdBits);// 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);private long workerIdShift = sequenceBits;private long datacenterIdShift = sequenceBits + workerIdBits;private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;private long sequenceMask = -1L ^ (-1L << sequenceBits);//记录产生时间毫秒数,判断是否是同1毫秒private long lastTimestamp = -1L;public long getWorkerId(){return workerId;}public long getDatacenterId() {return datacenterId;}public long getTimestamp() {return System.currentTimeMillis();}public IdWorker(long workerId, long datacenterId, long sequence) {// 检查机房id和机器id是否超过31 不能小于0if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;this.sequence = sequence;}// 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的idpublic synchronized long nextId() {// 这儿就是获取当前时间戳,单位是毫秒long timestamp = timeGen();if (timestamp < lastTimestamp) {System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",lastTimestamp - timestamp));}// 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id// 这个时候就得把seqence序号给递增1,最多就是4096if (lastTimestamp == timestamp) {// 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,//这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围sequence = (sequence + 1) & sequenceMask;//当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生IDif (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0;}// 这儿记录一下最近一次生成id的时间戳,单位是毫秒lastTimestamp = timestamp;// 这儿就是最核心的二进制位运算操作,生成一个64bit的id// 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit// 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型return ((timestamp - twepoch) << timestampLeftShift) |(datacenterId << datacenterIdShift) |(workerId << workerIdShift) | sequence;}/**1. 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID2. @param lastTimestamp3. @return*/private long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}//获取当前时间戳private long timeGen(){return System.currentTimeMillis();}/**4.  main 测试类5. @param args*/public static void main(String[] args) {System.out.println(1&4596);System.out.println(2&4596);System.out.println(6&4596);System.out.println(6&4596);System.out.println(6&4596);System.out.println(6&4596);//  IdWorker worker = new IdWorker(1,1,1);//  for (int i = 0; i < 22; i++) {//   System.out.println(worker.nextId());//  }}
}

SnowFlake 算法的优点:

  1. 高性能高可用:生成时不依赖于数据库,完全在内存中生成。

  2. 容量大:每秒钟能生成数百万的自增 ID。

  3. ID 自增:存入数据库中,索引效率高。

SnowFlake 算法的缺点:

依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成 ID 冲突或者重复。

实际中我们的机房并没有那么多,我们可以改进改算法,将 10bit 的机器 ID 优化,成业务表或者和我们系统相关的业务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/610039.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UV胶水能够粘接聚苯乙烯PS吗?需要注意哪些事项?又有哪些优势呢?

聚苯乙烯&#xff08;Polystyrene&#xff0c;简称PS&#xff09;是一种常见的合成聚合物&#xff0c;属于热塑性塑料。它是由苯乙烯单体聚合而成的&#xff0c;具有轻质、透明或半透明、电绝缘性好等特点。常见: 包装材料白色泡沫塑料&#xff08;EPS&#xff0c;用于包装、保…

不断发展的识别技术为多个行业带来新机遇

随着人工智能和机器学习技术的不断进步&#xff0c;识别技术已经得到了广泛的应用。识别技术是指通过计算机软件和硬件的配合&#xff0c;自动识别输入的信息并转换为可处理的数据的过程。这种技术的应用范围非常广泛&#xff0c;包括人脸识别、语音识别、文字识别、车牌识别等…

java注解学习

java注解 Annotation 为什么要学注解&#xff1f; 在日常开发中&#xff0c;基本都是在使用别人定义或是各种框架的注解&#xff0c;比如Spring框架中常用的一些注解&#xff1a;Controller、Service、RequestMapping&#xff0c;以此来实现某些功能&#xff0c;但是却不知道如…

HarmonyOS@Link装饰器:父子双向同步

Link装饰器&#xff1a;父子双向同步 子组件中被Link装饰的变量与其父组件中对应的数据源建立双向数据绑定。 说明 从API version 9开始&#xff0c;该装饰器支持在ArkTS卡片中使用。 概述 Link装饰的变量与其父组件中的数据源共享相同的值。 装饰器使用规则说明 Link变…

echarts使用之柱状图

一、引入Echarts npm install eacharts --save 二、选择一个Echarts图 选择创建一个柱状图 option { // x轴参数的基本配置xAxis: {type: category,data: [Mon, Tue, Wed, Thu, Fri, Sat, Sun] //X轴数据}, // y轴参数的基本配置yAxis: {type: value}, // series:[{data: …

富文本BraftEditor引起的bug

1、BraftEditor踩坑1 #基于之前写的一篇BraftEditor的使用# 1. 问题起源&#xff1a; 打开编辑弹窗--> 下面页面所示--> 当进行分类选择时候&#xff0c;就会报错&#xff0c;并且这个报错还不是一直都有&#xff0c;6次选择出现一次报错吧 2. 解决&#xff1a; 2.1 起…

CES 2024:LG专注于新产品的人工智能变革

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

蓝牙模块在电动汽车充电设施中的创新应用

随着电动汽车的普及&#xff0c;充电设施的便捷性和智能化成为关键的发展方向。蓝牙技术作为一种无线通信技术&#xff0c;在电动汽车充电设施中发挥着越来越重要的作用。本文将深入探讨蓝牙模块在电动汽车充电设施中的创新应用&#xff0c;以提高充电体验、提升管理效率&#…

MulticoreWare与Imagination一同按下汽车计算工作负载的“加速键”

中国北京 – 2024年1月8日 - MulticoreWare Inc与Imagination Technologies共同宣布已在德州仪器TDA4VM处理器上实现了GPU计算&#xff0c;不仅使算力提升了约50 GFLOPS&#xff0c;而且还实现了自动驾驶和高级驾驶辅助系统&#xff08;ADAS&#xff09;常见工作负载性能的跃升…

PCL 使用克拉默法则进行四点定球(C++详细过程版)

目录 一、算法原理二、代码实现三、计算结果本文由CSDN点云侠原创,PCL 使用克拉默法则进行四点定球(C++详细过程版),爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT生成的文章。 一、算法原理 已知空间内不共面的四个点,设其坐标为 A (…

鼠标随动指定区域高亮显示(Excel聚光灯)

实例需求&#xff1a;工作表中数据表实现跟随鼠标选中高亮效果&#xff0c;需要注意如下几个细节需求 数据表为连续区域&#xff0c;但是不一定从A1单元格开始数据表的前两行&#xff08;标题行&#xff09;不使用高亮效果数据表中已经应用了条件格式&#xff0c;高亮显示取消…

redis持久化与SpringBoot整合

redis持久化与SpringBoot整合 1、Redis全局命令1.2、Redis事务 2、Redis持久化2.1、RDB方式2.1.1、客户端触发机制2.1.2、服务端触发机制2.2.3、配置生成快照名称和位置2.2.4、优点2.2.5、缺点 2.2、AOF方式2.2.1、优点2.2.2、缺点 2.3、RDB-AOF混合方式2.4、持久化机制的选择 …

Nginx配置jks格式证书,升级https

通常在给服务器升级https&#xff0c;需要在nginx上配置域名对应的https证书&#xff0c;nginx通常配置的是crt和key格式的证书。最近遇到有人提供了jks格式的证书&#xff0c;查阅了几个资料都是需要先将jks转为p12格式&#xff0c;然后再将p12转为crt格式。这里记录一下相关过…

在JavaFX中的module-info.java的大坑,实现怎么删除这个后不会报错“需要JavaFX运行组件”

如果你也是因为module-info导致项目一些依赖包不能用&#xff0c;那么可以试着删除这个模块&#xff1b;话不多说&#xff0c;请看image 1.首先删除你的module-info.java&#xff08;注意&#xff1a;你要是怕出错的话&#xff0c;建议提前备份你的项目&#xff09; 2.然后找到…

影视视频知识付费行业万能通用网站系统源码,三网合一,附带完整的安装部署教程

在数字化时代&#xff0c;知识付费行业逐渐成为主流。人们对高质量内容的需求日益增长&#xff0c;越来越多的人愿意为有价值的知识和信息服务付费。为了满足这一市场需求&#xff0c;罗峰给大家分享一款全新的影视视频知识付费网站系统源码&#xff0c;为用户提供一站式的知识…

electron自定义窗口和右键菜单样式

前言 electron默认沿用系统UI&#xff0c;并没有提供很多接口供使用者定制样式&#xff0c;如果想要完全自定义的样式&#xff0c;目前我能想到的方案只能是通过前端自定义样式&#xff0c;然后通过进程通信来实现系统基础功能&#xff1a;最大/小化、关闭、拖动窗口等。 效果…

面试宝典进阶之关系型数据库面试题

D1、【初级】你都使用过哪些数据库&#xff1f; &#xff08;1&#xff09;MySQL&#xff1a;开源数据库&#xff0c;被Oracle公司收购 &#xff08;2&#xff09;Oracle&#xff1a;Oracle公司 &#xff08;3&#xff09;SQL Server&#xff1a;微软公司 &#xff08;4&#…

麒麟系统安装docker、mysql、clickhouse

1、查看麒麟系统版本信息 cat /etc/os-release 麒麟系统版本V10 64位操作系统 # uname -p x86_64 # uname -p aarch64 内核版本 # uname -r 4.19.90-24.4.v2101.ky10.x86_64 本操作为麒麟系统版本V10&#xff0c;x86_64操作系统 一&#xff0c;安装docker 文件&#xff1a…

MySQL数据库备份脚本(mysqldump)

数据库备份脚本 以下shell脚本的主要目的是备份数据库&#xff0c;并在需要时删除旧的备份文件以节省空间。它使用 mysqldump 命令来执行数据库备份&#xff0c;将备份文件存储在指定的路径下&#xff0c;并根据文件数量的阈值来删除旧的备份文件。扫描文章末尾二维码关注公众…

debug OpenBLAS library 和 应用示例

1. 构建openblas lib git clone gitgithub.com:OpenMathLib/OpenBLAS.git cd OpenBLAS/ 如果要安装在自定义文件夹中&#xff0c;可以修改 PREFIX 的定义&#xff1a; 将 PREFIX /opt/OpenBLAS 修改成 PREFIX ../local/ 然后构建&#xff1a; make -j make install 如果要…