工业异常检测AnomalyGPT-Demo试跑

写在前面:如果你有大的cpu和gpu可以使用,直接根据官方的安装说明就可以,如果没有,可以点进来试着看一下我个人的安装经验。

一、试跑环境

NVIDIA4090显卡24g,cpu内存33G,交换空间8g,操作系统ubuntu22.04(试跑过程cpu使用峰值为32.8g,交换空间使用峰值8g)

二、数据准备

1.AnomalyGPT源码下载

git clone https://github.com/CASIA-IVA-Lab/AnomalyGPT.git

2.权重准备

(1) ImageBind 权重:https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth

  (下载后放到AnomalyGPT/pretrained_ckpt/imagebind_ckpt文件夹下)

(2)vicuna权重:vicuna权重是由llama权重和vicuna 的delta权重组成,完整的vicuna权重需要由这两个权重合并而来。

 llama权重获取:https://huggingface.co/huggyllama/llama-7b/tree/main

vicunav0权重获取:https://huggingface.co/lmsys/vicuna-7b-delta-v0

vicunav1权重获取:https://huggingface.co/lmsys/vicuna-7b-delta-v1.1/tree/main

(3)AnomalyGPT的Delta 权重:https://huggingface.co/openllmplayground/pandagpt_7b_max_len_1024

(下载后放在AnomalyGPT/pretrained_ckpt/pandagpt_ckpt/7b文件夹下)

(4)AnomalyGPT权重:

https://huggingface.co/FantasticGNU/AnomalyGPT/blob/main/train_supervised/pytorch_model.pt

(下载后放在AnomalyGPT/code/ckpt/train_supervised文件夹下)

三、运行

1.环境搭建

(打开requirements.txt  把torch版本号去掉让其自动选择安装版本,然后保存。这里修改是因为我本地是cuda12,官方默认装的是cuda11.7对应的torch,担心不适配所以修改一下。)

创建anomalygpt环境并安装相关包

conda create -n anomalygpt python=3.8
conda activate anomalygpt
pip install -r requirements.txt

2.vicuna权重合并

vicuna权重合并用的是fastchat工具

fastchat环境搭建

conda create -n fastchat python=3.8
conda activate fastchat
pip3 install "fschat[model_worker,webui]"

合并命令:(注意:(1).这里的fastchat版本不能为0.1.10,因为0.1.10没有--low-cpu-mem这个参数,无法在cpu内存小的设备上进行合并权重;(2).vicuna的delta权重版本选1.1,vicunav0版本的时候有一个tensor错误,会报RuntimeError: The size of tensor a (32000) must match the size of tensor b (32001) at non-singleton dimension 0错误)

python -m fastchat.model.apply_delta --base llama权重文件夹路径 \--target 合并后的权重保存路径 \--delta vicuna的delta权重文件夹路径 \--low-cpu-mem

合并成功:

3.demo运行

(1)直接运行python web_demo.py,会报被kill的错;

(2)解决被杀死问题:将delta_chpt_path,anomaly_ckpt_path,imagebind_ckpt_path模型加载到gpu上(共5g左右的显存),这样vicuna模型才能正常加载完成。

(3)有时候直接运行python web_demo.py会报ValueError: Unknown scheme for proxy URL URL('socks://127.0.0.1:7891/')的错,

解决方案:在terminal中运行一下命令:

unset all_proxy; unset ALL_PROXY

 (4)正常运行运行python web_demo.py成功:

(5)线上线下demo效果对比:

 线上:

本地:

五、参考文献

 vacuna大模型训练:大模型也内卷,Vicuna训练及推理指南,效果碾压斯坦福羊驼

anomalygpt文章介绍:大模型也能用来做工业异常检测 - 知乎

大模型相关:UC伯克利发布大语言模型排行榜,Vicuna夺冠,清华ChatGLM进前5-36氪

工业缺陷数据集:MVTEC公开数据集_mvtec数据集-CSDN博客

高效大模型微调框架:大模型高效微调-PEFT框架介绍 - 知乎

DeepSpeedAgent:  [LLM]大模型训练(一)--DeepSpeed介绍-CSDN博客

SelfInstructTestDataset:生成语料方式【self-instruct方式生成语料代码实战】-CSDN博客

LDAP命令介绍---dsconfig_ldap 查看所有 bind dn-CSDN博客

权重合并操作参考:https://github.com/CASIA-IVA-Lab/AnomalyGPT/tree/main/pretrained_ckpt#1-prepare-vicuna-checkpoint

合并权重操作手册常见的坑:【LLM入门】Vicuna 模型部署与测试 - 知乎

GitHub - lm-sys/FastChat: An open platform for training, serving, and evaluating large language models. Release repo for Vicuna and Chatbot Arena.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/609011.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SEO写作:撰写在Google上排名的博客文章的13个技巧

随着排名的提高,您的网站可以提高其整体知名度。最终目标是通过有效的优化来推动自然流量,增加转化率,并实现业务目标。 如果你不针对搜索引擎优化你的内容,你的网站可能会在搜索引擎结果页面(SERP)上出现…

第7章-第9节-Java中的Stream流(链式调用)

1、什么是Stream流 Lambda表达式,基于Lambda所带来的函数式编程,又引入了一个全新的Stream概念,用于解决集合类库既有的鼻端。 2、案例 假设现在有一个需求, 将list集合中姓张的元素过滤到一个新的集合中;然后将过滤…

详解Oracle数据库的启动

Oracle数据库的启动,其概念可参考Overview of Instance and Database Startup。 其过程可参见下图: 当数据库从关闭状态进入打开数据库状态时,它会经历以下阶段。 阶段Mount状态描述1实例在没有挂载数据库的情况下启动实例已启动&#xff…

SpringBoot 注解超全详解

使用注解的优势: 采用纯java代码,不在需要配置繁杂的xml文件 在配置中也可享受面向对象带来的好处 类型安全对重构可以提供良好的支持 减少复杂配置文件的同时亦能享受到springIoC容器提供的功能 1 注解详解(配备了完善的释义&#xff0…

深入了解鸿鹄工程项目管理系统源码:功能清单与项目模块的深度解析

工程项目管理软件是现代项目管理中不可或缺的工具,它能够帮助项目团队更高效地组织和协调工作。本文将介绍一款功能强大的工程项目管理软件,该软件采用先进的Vue、Uniapp、Layui等技术框架,涵盖了项目策划决策、规划设计、施工建设到竣工交付…

5分钟彻底搞懂什么是token

大家好啊,我是董董灿。 几年前在一次工作中,第一次接触到自然语言处理模型 BERT。 当时在评估这个模型的性能时,领导说这个模型的性能需要达到了 200 token 每秒,虽然知道这是一个性能指标,但是对 token 这个概念却不…

新年喝酒有讲究,怎么喝葡萄酒呢?

中国的新年有着独特又深远的意义,无论人在天涯海角,回家团圆是每个人的心愿。新年亲朋好友欢聚一堂,没有酒哪有气氛,所以喝酒是必不可少的活动项目。云仓酒庄的品牌雷盛红酒LEESON分享那么,新年喝啥酒,葡萄…

uniapp 创建组件

组件:用于将某个功能的 HTML、CSS、JS 封装到一个文件中,提高代码的复用性和可维护性。 创建组件 一、在根目录中创建 components 文件夹,右键点击新建组件。 二、输入组件名称、选择默认模板、点击创建组件。 三、在组件中正常编写内容即可…

什么是MOM,与MES系统的差异是什么

MOM基本概念介绍 由于绝大多数MES只关注生产执行的核心作用, 对维护管理、质量管理和库存管理的重视程度有限,有时甚至缺少这部分功能, 并且未提高到与生产运营相类似的复杂程度, 难以充分满足现代制造企业对其制造运营区域的业务管理需求, 进而直接影响对企业的运营管理效果。…

C/C++学习笔记 vcpkg使用备忘及简要说明

一、简述 vcpkg 是一个免费的 C/C 包管理器,用于获取和管理库。从 1500 多个开源库中进行选择,一步下载并构建,或者添加您自己的私有库以简化构建过程。由 Microsoft C 团队和开源贡献者维护。 官方教程 vcpkg 文档 | Microsoft Learnvcpkg …

数据结构与算法(十)深度优先搜索与广度优先搜索

广度优先搜索 广度优先搜索:从一个顶点出发(由开始时顶点创造顺序优先决定),访问所有没有被访问过的临节点。然后在从被访问过的节点出发,重复之前的操作 如下为一个图 从1出发,先后访问2 3,之后…

横版长图一键切割,短图制作高效又便捷!

在数字时代,图片处理已经成为了我们日常工作和生活中不可或缺的一部分。为了满足大家对于高效、便捷的图片处理需求,我们推出了一款全新的图片处理工具——横版长图一键切割! 首先,我们进入首助编辑高手主页面,会看到…

优化改进YOLOv8算法之AKConv(可改变核卷积),即插即用的卷积,效果秒杀DSConv

目录 1 AKConv原理 1.1 Define the initial sampling position 1.2 Alterable convolutional operation 1.3 Extended AKConv 2 YOLOv8中加入AKConv模块 2.1 AKConv.py文件配置 2.2 task.py配置 2.3 创建添加优化点模块的yolov8-AKConv.yaml 2.4 训练 1 AKConv原理 …

Docker部署 SRS rtmp/flv流媒体服务器

一、介绍 SRS(Simple Realtime Server)是一款开源的流媒体服务器,具有高性能、高可靠性、高灵活性的特点,能够支持直播、点播、转码等多种流媒体应用场景。SRS 不仅提供了流媒体服务器,还提供了适用于多种平台的客户端…

Balking模式-实例

Balking模式 所谓Balk就是停止并返回的意思。 如果守护条件不成立,则立即中断处理。 因为Guarded Suspension模式是一直等待至可以运行。 当写入的内容与上次写入的内容完全相同时, 再向文件写入就显得多余了, 所以就不再执行写入操作。 也就…

深度解析Dubbo的基本应用与高级应用:负载均衡、服务超时、集群容错、服务降级、本地存根、本地伪装、参数回调等关键技术详解

负载均衡 官网地址: http://dubbo.apache.org/zh/docs/v2.7/user/examples/loadbalance/ 如果在消费端和服务端都配置了负载均衡策略, 以消费端为准。 这其中比较难理解的就是最少活跃调用数是如何进行统计的? 讲道理, 最少活跃数…

欧拉图及其应用

什么是欧拉图 提到欧拉图就要谈到哥尼斯堡七桥问题,最初有这样的一个问题的:18世纪中叶,东普鲁士哥尼斯堡城有一条贯穿全城的普雷格尔河,河中有两个岛,通过七座桥彼此相连,如下图所示 问题是这样的&…

【Python学习】Python学习10-列表

目录 【Python学习】Python学习10-列表 前言创建语法访问列表中的值更新和删除列表元素操作列表列表截取Python列表函数&方法参考 文章所属专区 Python学习 前言 本章节主要说明Python的列表List。 创建语法 创建一个列表 通过方括号和逗号分割创建,列表数据…

Linux系统下gitee使用git提交代码

Linux系统下gitee使用git提交代码 一、安装配置git1.1 在 Linux 中安装 git,并生成授信证书1.2 将SSH key 添加到 ssh-agent1.2 将SSH key 添加到你的gitee账户 二、gitee 的使用2.1 下载项目到本地 三、上传gitee三步走3.1 三板斧第一招:git add3.2 三板…

FreeRTOS学习总结(二)FreeRTOS任务创建和删除API函数

实现动态创建任务流程 任务控制块结构体成员介绍 typedef struct tskTaskControlBlock {volatile StackType_t * pxTopOfStack; /* 任务栈栈顶,必须为TCB第一个成员 */ListItem_t xStateListItem; /* 任务状态列表项 */ Li…