竞赛保研 基于深度学习的人脸识别系统

前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    在这里插入图片描述

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

在这里插入图片描述

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
在这里插入图片描述
这幅图就更加直观了:
在这里插入图片描述

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import osdef loadImageSet(add):FaceMat = mat(zeros((15,98*116)))j =0for i in os.listdir(add):if i.split('.')[1] == 'normal':try:img = cv2.imread(add+i,0)except:print 'load %s failed'%iFaceMat[j,:] = mat(img).flatten()j += 1return FaceMatdef ReconginitionVector(selecthr = 0.8):# step1: load the face image data ,get the matrix consists of all imageFaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T# step2: average the FaceMatavgImg = mean(FaceMat,1)# step3: calculate the difference of avgimg and all image data(FaceMat)diffTrain = FaceMat-avgImg#step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))eigSortIndex = argsort(-eigvals)for i in xrange(shape(FaceMat)[1]):if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:eigSortIndex = eigSortIndex[:i]breakcovVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix# avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵return avgImg,covVects,diffTraindef judgeFace(judgeImg,FaceVector,avgImg,diffTrain):diff = judgeImg.T - avgImgweiVec = FaceVector.T* diffres = 0resVal = inffor i in range(15):TrainVec = FaceVector.T*diffTrain[:,i]if  (array(weiVec-TrainVec)**2).sum() < resVal:res =  iresVal = (array(weiVec-TrainVec)**2).sum()return res+1if __name__ == '__main__':avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']for c in characteristic:count = 0for i in range(len(nameList)):# 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'judgeImg = cv2.imread(loadname,0)if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):count += 1print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:

from __future__ import print_functionfrom time import timeimport loggingimport matplotlib.pyplot as pltfrom sklearn.cross_validation import train_test_splitfrom sklearn.datasets import fetch_lfw_peoplefrom sklearn.grid_search import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixfrom sklearn.decomposition import RandomizedPCAfrom sklearn.svm import SVCprint(__doc__)# Display progress logs on stdoutlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')################################################################################ Download the data, if not already on disk and load it as numpy arrayslfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)# introspect the images arrays to find the shapes (for plotting)n_samples, h, w = lfw_people.images.shape# for machine learning we use the 2 data directly (as relative pixel# positions info is ignored by this model)X = lfw_people.datan_features = X.shape[1]# the label to predict is the id of the persony = lfw_people.targettarget_names = lfw_people.target_namesn_classes = target_names.shape[0]print("Total dataset size:")print("n_samples: %d" % n_samples)print("n_features: %d" % n_features)print("n_classes: %d" % n_classes)################################################################################ Split into a training set and a test set using a stratified k fold# split into a training and testing setX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)################################################################################ Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled# dataset): unsupervised feature extraction / dimensionality reductionn_components = 80print("Extracting the top %d eigenfaces from %d faces"% (n_components, X_train.shape[0]))t0 = time()pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)print("done in %0.3fs" % (time() - t0))eigenfaces = pca.components_.reshape((n_components, h, w))print("Projecting the input data on the eigenfaces orthonormal basis")t0 = time()X_train_pca = pca.transform(X_train)X_test_pca = pca.transform(X_test)print("done in %0.3fs" % (time() - t0))################################################################################ Train a SVM classification modelprint("Fitting the classifier to the training set")t0 = time()param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)clf = clf.fit(X_train_pca, y_train)print("done in %0.3fs" % (time() - t0))print("Best estimator found by grid search:")print(clf.best_estimator_)print(clf.best_estimator_.n_support_)################################################################################ Quantitative evaluation of the model quality on the test setprint("Predicting people's names on the test set")t0 = time()y_pred = clf.predict(X_test_pca)print("done in %0.3fs" % (time() - t0))print(classification_report(y_test, y_pred, target_names=target_names))print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))################################################################################ Qualitative evaluation of the predictions using matplotlibdef plot_gallery(images, titles, h, w, n_row=3, n_col=4):"""Helper function to plot a gallery of portraits"""plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)for i in range(n_row * n_col):plt.subplot(n_row, n_col, i + 1)# Show the feature faceplt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)plt.title(titles[i], size=12)plt.xticks(())plt.yticks(())# plot the result of the prediction on a portion of the test setdef title(y_pred, y_test, target_names, i):pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)prediction_titles = [title(y_pred, y_test, target_names, i)for i in range(y_pred.shape[0])]plot_gallery(X_test, prediction_titles, h, w)# plot the gallery of the most significative eigenfaceseigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]plot_gallery(eigenfaces, eigenface_titles, h, w)plt.show()

深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

在这里插入图片描述

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/608577.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java.io.IOException: Broken pipe

做1个接口&#xff0c;处理前端请求图片跨域的问题。由于前端拿图片的时候&#xff0c;有跨域问题&#xff0c;所以让后台先拿到图片&#xff0c;然后再写给前台。本来下面的代码没什么太大的问题&#xff0c;但是如果前台请求的图片一多&#xff08;1个页面中有很多图片&#…

Linux查看物理CPU个数、逻辑CPU个数、核数

Linux下如何判断服务器是虚拟机还是物理机&#xff1f; 1.systemd-detect-virt在虚拟环境中检测执行 &#xff0c;它可以识别虚拟化技术&#xff0c;并且可以将完整的VM虚拟化与容器虚拟化区分开来。 systemd-detect-virt退出&#xff0c;返回值为0&#xff08;成功&#xff0…

如何脱离keil在vscode上实现STM32单片机编程

【VScode Embedded IDE】Keil工程导入VScode&#xff0c;与Keil协同开发MCU_vscode编辑keil工程-CSDN博客 从零开始的51单片机——VsCodeEIDE环境搭建_vscodeeidesdcc-CSDN博客 结合一下这两个大佬的博客就是可以实现STM32的编程了 主要要点&#xff1a; &#xff08;1&#…

Vue应用多语言支持工程化最佳实践

前言 VoerkaI18n是一款非常优秀的全新的开源国际化多语言解决方案&#xff0c;主要特性包括&#xff1a; 全面工程化解决方案&#xff0c;提供初始化、提取文本、自动翻译、编译等工具链支持。符合直觉&#xff0c;不需要手动定义文本Key映射。强大的插值变量格式化器机制&am…

为什么要有虚拟线程(Java项目Loom)?

JEP No 425 是我期待已久的东西。这是 JDK 19 的并发 API 中添加的一个新概念。它处于预览阶段&#xff0c;很快它将在未来的几个版本中成为 JDK 中的永久功能。 虚拟线程非常轻量级&#xff0c;可以减少编写、维护和观察高吞吐量应用程序的工作量。 在这一部分中&#xff0c…

Spring——Spring整合MyBatis

Spring整合MyBatis 1.创建工程 1.1.pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"…

HarmonyOS 编写副标题 解决 ubTitle 可能淘汰问题

目前 harmonyos 中 title属性目前用的还正常 但是ubTitle副标题 会提示我们 可能要淘汰了 虽然说 我们目前 强行用 还是可以生效 但可能 哪天版本更新移除了这个属性 代码就报错了 我们可以通过Builder 来写这个副标题 和 标题 Entry Component struct Index {build() {Row(…

海外社媒运营为什么需要选择优质IP代理?

跨境电商卖家尤其需要关注海外社媒运营&#xff0c;想要更好地运营Instagram、Facebook、TikTok 或 Twitter等&#xff0c;挖掘社媒潜力需要采取战略方法&#xff0c;而社交媒体IP代理在这一活动中发挥着至关重要的作用&#xff0c;下面为你详细介绍。 一、社交媒体代理IP及其运…

【SkyWant.[2304]】路由器操作系统,移动【Netkeeper】使用教程校园网

目录 步骤一&#xff1a;正确连接网线&#xff0c;插电开机正确连接网线&#xff1a; 认识系统灯&#xff1a; 插电开机&#xff1a; 步骤二&#xff1a;开机之后&#xff0c;系统的基本设置 1.进入设置界面&#xff1a; 2.设置辅助热点wifi&#xff1a; 3.设置日常…

ROS2 Humble学习笔记

本文发表与个人的github pages。部分内容未同步到这里。 想查看完整内容&#xff0c;请移步到ROS2 Humble学习笔记。 一、前言 2013年的时候已经接触ROS了&#xff0c;当时断断续续学习了一些ROS的基础知识。16年搬到深圳之后&#xff0c;也有幸参加过星火的一次关于ROS的一些…

变电站综合自动化监控系统在某物流园35kV变电站中应用

摘 要&#xff1a;Acrel-1000变电站综合自动化系统&#xff0c;是我司根据电力系统自动化及无人值守的要求&#xff0c;总结国内外的研究和生产的先进经验&#xff0c;专门研制出的新一代电力监控系统。本系统具有保护、遥测、遥信、遥脉、遥调、遥控功能&#xff0c;可实现无人…

如何通过绘制【学习曲线】来判断模型是否【过拟合】

学习曲线是一种图形化工具&#xff0c;用于展示模型在训练集和验证集&#xff08;或测试集&#xff09;上的性能随着训练样本数量的增加而如何变化。它可以帮助我们理解模型是否受益于更多的训练数据&#xff0c;以及模型是否可能存在过拟合或欠拟合问题。学习曲线的x轴通常是训…

数据结构之B树和B+树

数据结构可视化演示链接&#xff0c;也就是视频中的网址 文章目录 一、B-Tree二、BTree(B-Tree变种) 一、B-Tree 样例图 叶节点具有相同的深度&#xff0c;叶节点的指针为空所有索引元素不重复节点中的数据索引从左到右递增排列 二、BTree(B-Tree变种) 样例图 非叶子节…

ThreadLocal内存泄漏与解决

目录 什么是Threadlocal&#xff1f; Threadlocal的基本使用 ThreadLocal的内存泄漏举例 场景1 场景2 场景3 场景4 内存泄漏原因分析 总结 什么是Threadlocal&#xff1f; ThreadLocal 是 Java 中的一个类&#xff0c;它提供了线程本地变量的支持。线程本地变量是指被…

Qt之单步调试

Qt Creator 单步调试功能介绍 Qt Creator 是 Qt 官方提供的一款集成开发环境&#xff08;IDE&#xff09;&#xff0c;它支持 C 开发&#xff0c;包括 Qt 应用程序的开发。以下是在 Qt Creator 中使用单步调试的基本步骤&#xff1a; 步骤 1&#xff1a;打开项目 首先&#…

Win10子系统Ubuntu实战(一)

在 Windows 10 中安装 Ubuntu 子系统&#xff08;Windows Subsystem for Linux&#xff0c;简称 WSL&#xff09;有几个主要的用途和好处&#xff1a;Linux 环境的支持、跨平台开发、命令行工具、测试和验证、教育用途。总体而言&#xff0c;WSL 提供了一种将 Windows 和 Linux…

Python库中关于时间的常见操作

目录 导入所需的库 获取当前时间 格式化日期和时间 解析日期和时间字符串 时间戳操作 获取当前时间戳&#xff1a; 将时间戳转换为日期和时间&#xff1a; 时间差操作 时间日期的时区处理 时间日期的随机生成 注意事项 总结 在Python中&#xff0c;时间处理是一个重…

Low Poly Cartoon House Interiors

400个独特的低多边形预制件的集合,可以轻松创建高质量的室内场景。所有模型都已准备好放入场景中,并使用一个纹理创建,以提高性能!包含演示场景! 模型分类: - 墙壁(79件) - 地板(28块) - 浴室(33个) - 厨房(36件) - 厨房道具(68件) - 房间道具(85件) - 灯具(…

Oracle19c文档 tnsnames.ora (一)

官网地址&#xff1a;Local Naming Parameters in the tnsnames.ora File 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. 6 tnsnames.ora 文件中的本地命名参数 本章提供了tnsnames.ora文件配置参数的完整列表。…

《亚太教育》是什么级别的期刊?是正规期刊吗?能评职称吗?

《亚太教育》主要发表教育理论研究、教育教学实践、学校管理、学科教育、科研管理等学术论文以及其他与教育教学相关的学术论文和研究成果,现征集教育管理以及各学科优秀论文。欢迎.各位教师、教育工作者及高校学生踊跃投稿。 收录情况&#xff1a;知网万方维普收录 投稿方式&a…