1.1 IEC61215标准背景
IEC61215Crystallinesiliconterrestrialphotovoltaic(PV)modules—Designqualificationandtypeapproval》是国际电工委员会的一个产品测试方法。目前太阳能行业正在广泛引用这个标准,对材料或产品进行测试。
2 材料耐候性老化测试原理
在介绍IEC61215:2005中10.10节“紫外预处理试验”之前,我们先来简单了解材料耐候性老化测试原理。
2.1 户外老化因素
老化损害主要由三个因素引起:光照,高温和潮湿。这三个因素中的任一个都会引起材料老化,它们的共同作用,大于其中任一因素造成的危害。
2.1.1 光照
高分子材料的化学键对太阳光中不同波段的光线的敏感性不同,一般对应一个阈值,太阳光的短波段紫外线是引起大部分聚合物物理性能老化的主要原因。
2.1.2 高温
温度越高,化学反应速度越快。老化反应是一种光致化学反应,温度不影响光致化学反应中的光致反应速度,却影响后继化学反应速度。因此温度对材料老化的影响往往是非线性的。
2.1.3 潮湿
水会直接参与材料老化反应。露水,雨水及湿度是自然条件中水的几个主要表现形式。研究表明,户外材料每天都将长时间处于潮湿状态(平均每天长达8-12个小时)[3]。而露水是户外潮湿的主要原因。露水造成的危害比雨水更大,因为它附着在材料上的时间更长,形成更为严酷的潮湿侵蚀。
2.2 紫外光加速老化测试
2.2.1 阳光模拟
QUV利用荧光紫外线灯来模拟太阳光对耐久性材料造成损害的威胁因素。这些灯在电学原理上与普通照明用的灯很相似,但它主要发射紫外线而非可见光或红外线。
对于不同的应用条件,需要不同光谱进而需要不同类型的灯。UVA-340灯管在紫外线的短波段提供最佳的模拟太阳光。UVA-340的光谱能量分布(SPD)在太阳光的截止点到大约360nm范围内与太阳光吻合的非常好。UV-B灯管在QUV中也被广泛应用。它们比UV-A灯管引起材料更快的老化,但它们的比太阳光的截止点更短的波长对许多材料可能产生不切实际的结果。
2.2.2 辐照度控制
为了达到精确且可重复的测试结果,有必要控制辐照度(光强)。大多数QUV型号装备有日光眼照度控制器。这种精确的光控系统为使用者提供了选择辐照度控制的优势。利用日光眼的反馈循环系统,可以连续、自动地控制且精确地保持辐照度。日光眼靠调整灯的功率来自动补偿灯的老化以及其他因素造成的光强变化。在仅仅几天或几周内,QUV能模拟在室外经几个月甚至几年所造成的损害。
2.2.3 UV控制
在QUV内部,因荧光紫外线灯固有的光谱稳定性,发光控制系统被简化。随着灯管的老化,所有光源的输出都会发生衰减。然而,不像大多数其它类型的灯,荧光灯的光谱不会随时间而变。这提高了测试结果的可重复性,也是用QUV进行测试的一个主要的优点。
2.2.4 温度控制
在QUV中,温度的控制也很重要,因为温度影响材料老化的速率。紫外试验箱一般是通过黑板温度计或黑标温度计来精确控制样品表面温度。
2.2.5 潮湿模拟
在QUV冷凝循环过程中,测试室底部的水槽被加热用来产生蒸汽。在较高的温度下,热蒸汽使测试室内保持100%的相对湿度。QUV中,测试样品实际上形成测试室的侧壁,样品的另一面暴露在室内周围的空气中。室内相对较冷的空气就使得测试样品的表面比测试室内的热蒸汽的温度低好几度。这一温度差造成通过冷凝循环在样品表面液态形式的水慢慢冷凝而成。
二、技术参数
设备结构 | 平板式,上部为试验区,可以放置不同的立体试件 |
内箱尺寸 | 定制 |
外箱尺寸 | 定制 |
黑板温度范围 | 50℃~70℃ |
冷凝温度范围 | RT+10℃~70℃ |
湿度范围 | 湿度范围:40%~98%RH; 满足a.冷凝周期:>85%R.H;b.辐照周期: 75%R.H |
黑板温度波动度 | ±3℃ |
辐照强度范围 | 0.35~1.3w/m²(距离样品50mm处平均数据) |
紫外波长 | 290nm~400nm,峰值波长IVA340nm,可选IVB313 |
辐照计 | 在线式辐照强度显示计,可通过液晶显示触摸屏控制器采用光电转换 器采集直接显示并控制辐照强度 |
灯管使用寿命 | 1000~1500h |
灯管间距离 | 70πm |
样品测试表面与 灯管中心距 | 应控制在50mm,样架可调高度 |
自动水喷淋系统 | 喷淋管为不锈钢材质,喷嘴选用耐腐蚀材料,增压水泵的压力大于 0.1Mp |
除了标准的冷凝机制,QUV还可用水喷淋系统来模拟其它一些损害情况,比如热冲击或机械腐蚀。使用者可操作QUV来产生潮湿循环并伴随紫外线,这一模拟与自然老化非常相似。