理论U3 决策树

文章目录

  • 一、决策树算法
    • 1、基本思想
    • 2、构成
      • 1)节点
      • 3)有向边/分支
    • 3、分类步骤
      • 1)第1步-决策树生成/学习、训练
      • 2)第2步-分类/测试
    • 4、算法关键
  • 二、信息论基础
    • 1、概念
    • 2、信息量
    • 3、信息熵:
  • 二、ID3 (Iterative Dichotomiser 3)算法
    • 1、基本思想:
    • 2、熵引入
      • 1)经验熵
      • 2)条件熵
      • 3)经验条件熵
      • 4)信息增益(information gain)
    • 3、算法
    • 4、算法案例
    • 5、算法特点
  • 三、ID3算法问题
    • 1、 属性筛选度量标准
    • 2、 剪枝处理
      • 1)问题
      • 2)解决
      • 3)案例
    • 3、 连续值处理
    • 4、 缺失值处理
    • 5、不同代价属性的处理

一、决策树算法

1、基本思想

基本思想:采用自顶向下的递归方法,(以信息熵为度量)构造一棵(熵值下降最快的)树,(到叶子节点处的熵值为零)此时每个叶节点中的实例都属于同一类

2、构成

决策树是一种树型结构,由结点和有向边组成

1)节点

  1. 内部结点表示一个属性或特征
  2. 叶结点代表一种类别

3)有向边/分支

分支代表一个测试输出

3、分类步骤

1)第1步-决策树生成/学习、训练

利用训练集建立(并精化)一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程

step 1:选取一个属性作为决策树的根结点,然后就这个属性所有的取值创建树的分支。
step 2:用这棵树来对训练数据集进行分类:

  1. 如果一个叶结点的所有实例都属于同一类,则以该类为标记标识此叶结点。
  2. 如果所有的叶结点都有类标记,则算法终止
    step 3:否则,选取一个从该结点到根路径中没有出现过的属性为标记标识该结点,然后就这个属性所有的取值继续创建树的分支;重复算法步骤step 2

2)第2步-分类/测试

利用生成的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。

4、算法关键

建立决策树的关键,即在当前状态下选择哪个属性作为分类依据

目标:每个分支节点的样本尽可能属于同一类别,即节点的“纯度”(purity)越来越高;最具区分性的属性!
根据不同目标函数,建立决策树主要有以下三种算法
◼ ID3: 信息增益
◼ C4.5: 信息增益率
◼ CART:基尼指数

二、信息论基础

1、概念

信息论与概率统计中,熵表示随机变量不确定性的大小,是度量样本集合纯度最常用的一种指标

2、信息量

信息量:具有确定概率事件的信息的定量度量
定义: I ( x ) = − l o g 2 p ( x ) I(x)=-log_2p(x) I(x)=log2p(x) 其中p(x)为事件x发生的概率

3、信息熵:

事件集合的信息量的平均值。
定义: H ( x ) = ∑ i h ( x i ) = ∑ i p ( x i ) I ( x i ) = − ∑ i p ( x i ) l o g 2 p ( x i ) H(x) = \sum_{i}h(x_i)=\sum_{i} p(x_i)I(x_i)=-\sum_{i} p(x_i)log_2p(x_i) H(x)=ih(xi)=ip(xi)I(xi)=ip(xi)log2p(xi)

熵定义了一个函数(概率密度函数pdf)到一个值(信息熵)的映射

p ( x ) → H p(x) → H p(x)H (函数→数值)

熵是随机变量不确定性的度量:
◼ 不确定性越大,熵值越大
◼ 若随机变量退化成定值,熵为0
在这里插入图片描述

二、ID3 (Iterative Dichotomiser 3)算法

ID3算法是一种最经典的决策树学习算法。

1、基本思想:

以信息熵为度量,用于决策树节点的属性选择,每次优先选取信息增益最大的属性,亦即能使熵值变为最小的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0。此时,每个叶子节点对应的实例集中的实例属于同一类。

熵值下降 → 无序变有序

2、熵引入

1)经验熵

假设当前样本集合D 中第c(c=1,2,…,C)类样本所占比例为 p c p_c pc(c=1,2,…,C),则D 的经验信息熵(简称经验熵)定义为:

H ( D ) = − ∑ c = 1 C p c l o g 2 p c = − ∑ c = 1 C D c D l o g 2 D c D H(D)=-\sum_{c=1}^{C}p_clog_2p_c=-\sum_{c=1}^{C}\frac{D_c}{D}log_2\frac{D_c}{D} H(D)=c=1Cpclog2pc=c=1CDDclog2DDc

H(D)的值越小,则D 的纯度越高

2)条件熵

对随机变量 ( X , Y ) (X, Y) (X,Y),联合分布为: p ( X = x i , Y = y i ) = p i j p(X=x_i,Y=y_i)=p_{ij} p(X=xi,Y=yi)=pij

条件熵 H ( Y ∣ X ) H(Y |X ) H(YX) 表示在已知随机变量X 的条件下,随机变量Y的不确定性:

H ( Y ∣ X ) = − ∑ i = 1 n p i H ( Y ∣ X = x i ) H(Y|X)=-\sum_{i=1}^{n}p_iH(Y|X=x_i) H(YX)=i=1npiH(YX=xi)

可证明:条件熵𝐻(Y|X)相当于联合熵𝐻(𝑋,𝑌)减去单独的熵𝐻(X),即
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H(Y|X)=H(X,Y)-H(X) H(YX)=H(X,Y)H(X)
在这里插入图片描述
在这里插入图片描述

3)经验条件熵

在这里插入图片描述
即特征a的信息对样本D 的信息的不确定性减少的程度

4)信息增益(information gain)

特征 a 对训练数据集 D 的信息增益 G ( D , a ) G(D, a) G(D,a) ,定义为集合D 的经验熵 H(D) 与特征 a 给定条件下 D 的经验条件熵 H ( D ∣ a ) H(D | a) H(Da) 之差,即
G ( D , a ) = H ( D ) − H ( D ∣ a ) = H ( D ) − ∑ n = 1 N D n D H ( D n ) G(D,a)=H(D)-H(D|a)=H(D)-\sum_{n=1}^{N}\frac{D^n}{D}H(D^n) G(D,a)=H(D)H(Da)=H(D)n=1NDDnH(Dn)

ID3算法即是以此信息增益为准则,对每次递归的节点属性进行选择的

3、算法

在这里插入图片描述

4、算法案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、算法特点

最大优点是,它可以自学习:在学习的过程中,不需要使用者了解过多背景知识,只需要对训练实例进行较好的标注,就能够进行学习。

决策树的分类模型是树状结构,简单直观,比较符合人类的理解方式。

可将决策树中到达每个叶节点的路径转换为IF—THEN形式的分类规则,这种形式更有利于理解。

从一类无序、无规则的事物(概念)中推理出决策树表示的分类规则。

三、ID3算法问题

信息增益偏好取值多的属性(分散,极限趋近于均匀分布)

1、 属性筛选度量标准

可能会受噪声或小样本影响,易出现过拟合问题。
结果训练出来的形状是一棵庞大且深度很浅的树,这样的划分是极为不合理的。
改进方法
在这里插入图片描述
在这里插入图片描述

2、 剪枝处理

1)问题

无法处理连续值的属性。

决策树对训练数据有很好的分类能力,但对未知的测试数据未必有好的分类能力,泛化能力弱,即可能发生过拟合现象。

训练数据有噪声,对训练数据拟合的同时也对噪音进行拟合,影响了分类效果。

叶节点样本太少,易出现耦合的规律性,使一些属性恰巧可以很好地分类,但却与实际的目标函数并无关系。

2)解决

剪枝是决策树学习算法中对付“过拟合”的主要手段

  1. 预剪枝策略(pre-pruning)
    决策树生成过程中,对每个节点在划分前进行估计,若划分不能带来决策树泛化性能提升,则停止划分,并将该节点设为叶节点
    优点:预剪枝“剪掉了”很多没必要展开的分支,降低了过拟合的风险,并且显著减少了决策树的训练时间开销和测试时间开销
    劣势:有些分支的当前划分有可能不能提高甚至降低泛化性能,但后续划分有可能提高泛化性能;预剪枝禁止这些后续分支的展开,可能会导致欠拟合

  2. 后剪枝策略(post-pruning)
    先利用训练集生成决策树,自底向上对非叶节点进行考察,若将该叶节点对应子树替换为叶节点能带来泛化性能提升,则将该子树替换为叶节点
    优点:优势:测试了所有分支,比预剪枝决策树保留了更多分支,降低了欠拟合的风险,泛化性能一般优于预剪枝决策树。
    劣势:后剪枝过程在生成完全决策树后在进行,且要自底向上对所有非叶节点逐一评估;因此,决策树的训练时间开销要高于未剪枝决策树和预剪枝决策树

3)案例

在这里插入图片描述
预剪枝算法
在这里插入图片描述
在这里插入图片描述
后剪枝算法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、 连续值处理

无法处理属性值不完整的训练数据
在这里插入图片描述
基本思想:采用二分法(bi-partition)进行离散化
在这里插入图片描述
在这里插入图片描述

4、 缺失值处理

无法处理不同代价的属性
前面假设:所有样本的属性完整
实际情况:存在不完整样本:即样本的某些属性缺失;特别是属性数目较多时
如果简单放弃不完整样本,会导致数据信息的浪费
实际中确实需要属性缺失情况下进行决策
不同代价属性的处理
需要解决的两个问题

  1. 如何在属性值缺失的情况下进行划分属性选择(计算信息增益)?
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  2. 给定划分属性,若样本在该属性上的值缺失,如何对样本进行划分?
    在这里插入图片描述
    案例:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

5、不同代价属性的处理

不同的属性测量具有不同的代价
在属性筛选度量标准中考虑属性的不同代价
优先选择低代价属性的决策树
必要时才依赖高代价属性
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/606934.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[论文阅读]4DRadarSLAM: A 4D Imaging Radar SLAM System for Large-scale Environments

目录 1.摘要和引言: 2. 系统框架: 2.1 前端: 2.2 回环检测: 2.3 后端: 3.实验和分析: 4.结论 1.摘要和引言: 这篇论文介绍了一种名为“4DRadarSLAM”的新型4D成像雷达SLAM系统&#xff0…

若依CRUD搬砖开始,Java小白入门(十)

背景 经过囫囵吞枣的学习若依框架,对于ruoyi-framework,common,安全,代码生成等模块都看了一圈,剩余的调度模块,这个暂时不深入,剩余的是ruoyi-system,就是用mybatis完成的&#xf…

063:vue中一维数组与三维数组联动,类似购物车增减

第063个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使用,computed,watch,生命周期(beforeCreate,created,beforeM…

服务发现Discovery

对于注册进eureka里面的微服务,可以通过服务发现来获得该服务的信息 1、 修改cloud-provider-payment8001的controller import com.my.springcloud.utils.RestResponse; import com.my.springcloud.entities.Payment; import com.my.springcloud.service.PaymentSe…

K8S API访问控制之RBAC利用

前言 K8S对于API的访问安全提供了访问控制,主要为4个阶段,本文为第二个阶段——鉴权的RBAC。RBAC是基于角色的访问控制,使用kubeadm安装集群1.6版本以上的都默认开启了RBAC。本文主要研究集群可能存在的利用点及相对应的利用手法。 API访问…

【JAVA】final、finally、finalize 有什么区别?

🍎个人博客:个人主页 🏆个人专栏: JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 final: finally: finalize: 结语 我的其他博客 前言 在Java中,final、f…

使用flet创建todo应用

使用 Flet 在 Python 中创建待办事项应用 Create To-Do app in Python with Flet 翻译官网教程https://flet.dev/docs/tutorials/python-todo,对一些地方进行了注释和修改。 安装flet Python版本需要3.8及以上,使用pip安装: pip install…

test fuzz-01-模糊测试(Fuzz Testing)入门 Atheris、Jazzer、jqf、kelinci、FLA、libfuzzer 对比

拓展阅读 开源 Auto generate mock data for java test.(便于 Java 测试自动生成对象信息) 开源 Junit performance rely on junit5 and jdk8.(java 性能测试框架。性能测试。压测。测试报告生成。) test fuzz-01-模糊测试(Fuzz Testing) test fuzz-…

代码随想录算法训练营day6|242.有效的字母异位词、349.两个数组的交集、202.快乐数

哈希表理论基础 建议:大家要了解哈希表的内部实现原理,哈希函数,哈希碰撞,以及常见哈希表的区别,数组,set 和map。 什么时候想到用哈希法,当我们遇到了要快速判断一个元素是否出现集合里的时…

Unity Urp 渲染管线 创建透明材质球

按照以上方式设置后就可以得到一个透明的材质球 Tips:Blending mode : alpha 和 Blending mode : additive都是完全透明效果具体差异暂时不知道

模型创建与nn.Module

一、网络模型创建步骤 二、nn.Module 下面描述了在 PyTorch 中常见的一些属性和功能,用于存储和管理神经网络模型的参数、模块、缓冲属性和钩子函数。 parameters:用于存储和管理 nn.Parameter 类的属性。nn.Parameter 是一种特殊的张量,它被…

在做题中学习(44):无重复字符的最长字串

3. 无重复字符的最长子串 - 力扣(LeetCode) 解法:同向双指针————“滑动窗口” 思路:如下图,当right进窗口后,就出现了a重复,所以在left出窗口时时,需要跳到第一个a 后面的位置&…

【QML COOK】- 004-添加动画

1. 编辑main.qml import QtQuickWindow {width: 800height: 800visible: truetitle: qsTr("Hello World")Image {id: backgroudanchors.fill: parentsource: "qrc:/Resources/Images/arrow.png"Behavior on rotation {NumberAnimation {duration: 1000}}}…

Master01节点免密钥登录其他节点

1、执行命令 ssh-keygen -t rsa,一直敲回车 2、for i in k8s-master01 k8s-node01 k8s-node02;do ssh-copy-id -i .ssh/id_rsa.pub $i;done 输入yes和对应节点密码

【CSS】首个字符占用多行,并自定义样式

效果 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>首字母大写</title><style&…

【QT】计算器-模拟实现

目录 准本工作 槽函数实现 数字按键槽函数 退格槽函数 运算符 按键 槽函数 等号槽函数 初始化及计算器页面布局 整体代码 widget.h widget.cpp 准本工作 工程创建&#xff1a; 计算器模拟实现需求分析&#xff1a; 样式预览&#xff1a; &#x1f3a0;主要功能&…

uni-app如何生成骨架屏

骨架屏是页面的一个空白版本&#xff0c;通常会在页面完全渲染之前&#xff0c;通过一些灰色的区块大致勾勒出轮廓&#xff0c;待数据加载完成后&#xff0c;再替换成真实的内容。 参考效果 骨架屏作用是缓解用户等待时的焦虑情绪&#xff0c;属于用户体验优化方案。 生成骨…

视频剪辑方法:智能转码从视频到图片序列,高效转换攻略

在视频编辑和后期处理中&#xff0c;经常要将视频转换为图片序列&#xff0c;以便进行单独编辑或应用。下面一起来看云炫AI智剪如何批量智能转码的方法&#xff0c;高效地将视频转换为图片序列。 视频转为序列图片缩略图效果 视频转为序列图片的效果图&#xff0c;画面清晰&a…

基于WIFI指纹的室内定位算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1WIFI指纹定位原理 4.2 指纹数据库建立 4.3定位 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .....................................…

【SpringCloud Alibaba笔记】(4)Seata处理分布式事务

Seata 分布式事务问题 单机单库没这个问题&#xff0c;分布式之前从1: 1 -> 1:N ->N:N 分布式之后 单体应用被拆分成微服务应用&#xff0c;原来的三个模块被拆分成三个独立的应用分别使用三个独立的数据源&#xff0c;业务操作需要调用三个服务来完成。 此时每个服务…