基于动物迁徙算法优化的Elman神经网络数据预测 - 附代码

基于动物迁徙算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于动物迁徙算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于动物迁徙优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用动物迁徙算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于动物迁徙优化的Elman网络

动物迁徙算法原理请参考:https://blog.csdn.net/u011835903/article/details/118729845

利用动物迁徙算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

动物迁徙参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 动物迁徙相关参数设定
%% 定义动物迁徙优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,动物迁徙-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/606876.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华清远见作业第二十三天——IO(第六天)

使用有名管道完成两个进程之间相互通信 代码&#xff1a; 创建管道&#xff1a; #include<a.h> int main(int argc, const char *argv[]) {//创建有名管道文件if(mkfifo("./myfifo1", 0664) ! 0){perror("mkfifo1 error");return -1;}printf("…

【Java集合篇】HashMap的put方法是如何实现的?

HashMap的put方法是如何实现的 ✔️典型解析✔️ 拓展知识仓✔️HashMap put方法的优缺点有哪些✔️如何避免HashMap put方法的哈希冲突✔️如何避免HashMap put方法的哈希重 ✔️源码解读✔️putVal 方法主要实现如下&#xff0c;为了更好的帮助大家阅读&#xff0c;提升效率&…

antd ColorPicker 颜色选择器

ColorPicker 属性 allowClear 允许清除选择的颜色 boolean false arrow 配置弹出的箭头 boolean | { pointAtCenter: boolean } true children 颜色选择器的触发器 React.ReactNode - defaultValue 颜色默认的值 string | Color - defaultFormat 颜色格式默认的值 rgb | he…

【独家解密】Java中定时任务的解决方案详解

目录 1、前言 2、定时任务的概述 2.1 什么是定时任务 2.2 定时任务的应用场景 3、使用Timer类和TimerTask类 3.1 Timer类的使用方法 3.2 TimerTask类的使用方法 4、使用ScheduledThreadPoolExecutor类 4.1 ScheduledThreadPoolExecutor类的使用方法 5、使用Spring框架…

ComfyUI报错AttributeError: module ‘cv2.gapi.wip.draw‘ has no attribute ‘Text‘

ComfyUI在安装comfyui-reactor-node插件,然后启动之后突然报错: AttributeError: module cv2.gapi.wip.draw has no attribute Text 这是怎么回事呢? 于是四处搜寻答案。 总之就是opencv-python版本的问题导致的。 我将有可能解决办法的方法进行了总结。 下面列出所有解…

操作系统实验二

实验二 观察Linux行为&#xff0c;使用proc文件系统 一、实验目的 学习Linux内核、进程、存储和其他资源的一些重要特征。读/proc/stat文件&#xff0c;计算并显示系统CPU占用率和用户态CPU占用率。&#xff08;编写一个程序使用/proc机制获得以及修改机器的各种资源参数。需要…

安卓上使用免费的地图OpenStreetMap

前一段使用了微信的地图&#xff0c;非常的好用。但是存在的问题是海外无法使用&#xff0c;出国就不能用了&#xff1b; 其实国内三家&#xff1a;百度&#xff0c;高德&#xff0c;微信都是一样的问题&#xff0c;当涉及到商业使用的时候需要付费&#xff1b; 国外除了谷歌…

51单片机介绍

1 单片机简介 单片机&#xff0c;英文Micro Controller Unit&#xff0c;简称MCU 内部集成了CPU、RAM、ROM、定时器、中断系统、通讯接口等一系列电脑的常用硬件功能 单片机的任务是信息采集&#xff08;依靠传感器&#xff09;、处理&#xff08;依靠CPU&#xff09;和硬件设…

2.6 KERNEL LAUNCH

图2.15在vecAdd函数中显示最终主机代码。此源代码完成了图2.6.中的骨架。2.12和2.15共同说明了一个简单的CUDA程序&#xff0c;该程序由主机代码和设备内核组成。该代码是硬接的&#xff0c;每个线程块使用256个线程。然而&#xff0c;使用的线程块的数量取决于向量&#xff08…

jenkins通过流水线自动部署项目(k8s部署)

参考&#xff1a;https://www.cnblogs.com/rb2010/p/16195443.html docker 拉取镜像到本地&#xff1a; docker pull docker.io/jenkins/jenkins:2.164配置卷挂载&#xff1a;使用nfs 参考&#xff1a;https://www.kuboard.cn/learning/k8s-intermediate/persistent/nfs.htm…

指针传参误区

C语言中指针作为形参传递时&#xff0c;func&#xff08;*a, *b&#xff09; 这种形式的话&#xff0c;是无法通过简单的 ab来修改的&#xff0c;在函数体内a的地址确实被修改成b的地址了&#xff0c;但是当函数执行结束时&#xff0c;a的地址会重新回到原本的地址里面&#xf…

卷积神经网络|猫狗分类系列--导入kaggle猫狗数据集

解决任何真实问题的重要一步是获取数据&#xff0c;Kaggle提供了大量不同数据科学问题的竞赛。 我们将从 https://www.kaggle.com/competitions/dogs-vs-cats/data 下载猫狗数据集&#xff0c;并对其进行一定的操作&#xff0c;以正确的导入到我们的计算机&#xff0c;为接下…

四 视图

1、实验目的 理解SQL成熟设计基本规范&#xff0c;能够熟练使用SQL语句来创建需要的视图&#xff0c;定义数据库外模式&#xff0c;并能使用所创建的视图实现数据管理。 2、实验内容及要求 使用SQL对数据库进行各类查询数据操纵操作&#xff0c;掌握单行数据插入、多行数据插…

设计模式的艺术P1基础—第1章 概述

刘伟&#xff0c;2020 概述&#xff1a;4部分&#xff0c;26章。 P1:基础&#xff08;1-2章&#xff09; P2:创建型设计模式&#xff08;创建艺术&#xff0c;3-8章&#xff09; P3:结构型设计模式&#xff08;组合艺术&#xff0c;9-15章&#xff09; P4:行为型设计模式&…

2_工厂设计_工厂方法和抽象工厂

工厂设计模式-工厂方法 1.概念 工厂方法模式(Fatory Method Pattern ) 是指定义一个创建对象的接口&#xff0c;但让实现这个接口的类来决定实例化哪个类&#xff0c;工厂方法让类的实例化推迟到子类中进行。 在工厂方法模式中用户只需要关心所需产品对应的工厂&#xff0c;…

AUTOSAR开发文档

目录 目录 状态机电源管理开发... I 文档... I 1. 综述... 1 2. 系统硬件架构图... 1 3. 状态机设计方案... 2 4. 电源管理方案... 4 综述 本文档主要描述了MCU芯片TC297的AUTOSAR方案。MCU的基础软件由AUTOSAR软件实现&#xff0…

嵌入式——循环队列

循环队列 (Circular Queue) 是一种数据结构(或称环形队列、圆形队列)。它类似于普通队列,但是在循环队列中,当队列尾部到达数组的末尾时,它会从数组的开头重新开始。这种数据结构通常用于需要固定大小的队列,例如计算机内存中的缓冲区。循环队列可以通过数组或链表实现,…

微信小程序实战-01翻页时钟-1

文章目录 前言需求分析功能设计界面设计界面结构设计界面样式设计 逻辑设计 单页功能实现运行结果 前言 我经常在手机上用的一款app有一个功能是翻页时钟&#xff0c;基于之前学习的小程序相关的基础内容&#xff0c;我打算在微信小程序中也设计一个翻页时钟功能&#xff0c;J…

大模型实战营Day2 作业

基础作业 1 使用 InternLM-Chat-7B 模型生成 300 字的小故事 2 熟悉 hugging face 下载功能&#xff0c;使用 huggingface_hub python 包&#xff0c;下载 InternLM-20B 的 config.json 文件到本地 进阶作业 1 完成浦语灵笔的图文理解及创作部署 2 完成 Lagent 工具调用 Demo…

大数据计算基础真题回忆

转载学长20 21的真题 转载链接 注&#xff1a;每年的课件可能会有更改&#xff0c;内容不一样&#xff0c;所以读者复习的时候以所在年份的课件为准 2020 ​ 2021 笔者2023秋 2023 都是大题&#xff0c;没有选择题。 改进的近似算法中&#xff0c;结合具体的例子说明&am…