RT-Thread 线程管理

线程管理

在日常生活中,我们要完成一个大任务,一般会将它分解成多个简单、容易解决的小问题,小问题逐个被解决,大问题也就随之解决了。

在多线程操作系统中,也同样需要开发人员把一个复杂的应用分解成多个小的、可调度的、序列化的程序单元,当合理地划分任务并正确地执行时,这种设计能够让系统满足实时系统的性能及时间的要求。

例如让嵌入式系统执行这样的任务,系统通过传感器采集数据,并通过显示屏将数据显示出来,在多线程实时系统中,可以将这个任务分解成两个子任务。
如图所示,一个子任务不间断地读取传感器数据,并将数据写到共享内存中,另外一个子任务周期性地从共享内存中读取数据,并将传感器数据输出到显示屏上。
在这里插入图片描述
在RT-Thread中,与上述子任务对应的程序实体就是线程,线程是实现任务的载体,它是RT-Thread中最基本的调度单位,它描述了一个任务执行的运行环境,也描述了这个任务所处的优先等级,重要的任务可设置相对较高的优先级,非重要的任务可以设置较低的优先级,不同的任务还可以设置相同的优先级,轮流运行。

当线程运行时,它会认为自己是以独占CPU的方式在运行。
线程执行时的运行环境称为上下文,具体来说就是各个变量和数据,包括所有的寄存器变量、堆栈、内存信息等。

线程管理的功能特点

RT-Thread线程管理的主要功能是对线程进行管理和调度,系统中共存在两类线程,分别是系统线程和用户线程。

  • 系统线程是由内核创建的线程
  • 用户线程是由应用程序创建的线程

这两类线程都会从内核对象容器中分配线程对象,当线程被删除时,也会被从对象容器中删除。
如图所示,每个线程都有重要的属性,如线程控制块,线程栈,入口函数等。
在这里插入图片描述

RT-Thread线程调度器是抢占式的,主要的工作就是从就绪线程列表中查找最高优先级线程,保证最高优先级的线程能够被运行,最高优先级的任务一旦就绪,总能得到CPU的使用权。

当一个运行着的线程使一个比它优先级高的线程满足运行条件,当前线程的 CPU 使用权就被剥夺了,或者说被让出了,高优先级的线程立刻得到了 CPU 的使用权。

如果是中断服务程序使一个高优先级的线程满足运行条件,中断完成时,被中断的线程挂起,优先级高的线程开始运行。

当调度器调度线程切换时,先将当前线程上下文保存起来,当再切回到这个线程时,线程调度器将该线程的上下文信息恢复。

线程控制块

线程控制块由结构体struct rt_thread表示,线程控制块是操作系统用于管理线程的一个数据结构,它会存放线程的一些信息,例如优先级、线程名称、线程状态等,也包含线程与线程之间连接用的链表结构。

/* 线程控制块 */
struct rt_thread
{/* rt 对象 */char        name[RT_NAME_MAX];     /* 线程名称 */rt_uint8_t  type;                   /* 对象类型 */rt_uint8_t  flags;                  /* 标志位 */rt_list_t   list;                   /* 对象列表 */rt_list_t   tlist;                  /* 线程列表 *//* 栈指针与入口指针 */void       *sp;                      /* 栈指针 */void       *entry;                   /* 入口函数指针 */void       *parameter;              /* 参数 */void       *stack_addr;             /* 栈地址指针 */rt_uint32_t stack_size;            /* 栈大小 *//* 错误代码 */rt_err_t    error;                  /* 线程错误代码 */rt_uint8_t  stat;                   /* 线程状态 *//* 优先级 */rt_uint8_t  current_priority;    /* 当前优先级 */rt_uint8_t  init_priority;        /* 初始优先级 */rt_uint32_t number_mask;......rt_ubase_t  init_tick;               /* 线程初始化计数值 */rt_ubase_t  remaining_tick;         /* 线程剩余计数值 */struct rt_timer thread_timer;      /* 内置线程定时器 */void (*cleanup)(struct rt_thread *tid);  /* 线程退出清除函数 */rt_uint32_t user_data;                      /* 用户数据 */
};

init_priority是线程创建时指定的线程优先级,在线程运行过程当中是不会被改变的(除非用户执行线程控制函数进行手动调整线程优先级)。
cleanup会在线程退出时,被空闲线程回调一次以执行用户设置的清理现场等工作。
最后的一个成员user_data可由用户挂接一些数据信息到线程控制块中,以提供一种类似线程私有数据的实现方式。

线程栈

线程具有独立的栈,当进行线程切换时,会将当前线程的上下文存在栈中,当线程要恢复运行时,再从栈中读取上下文信息,进行恢复。

线程栈还用来存放函数中的局部变量:函数中的局部变量从线程栈空间中申请;函数中局部变量初始时从寄存器中分配(ARM架构),当这个函数再调用另一个函数时,这些局部变量将放入栈中。

对于线程第一次运行,可以以手工的方式构造这个上下文来设置一些初始的环境:入口函数(PC寄存器),入口参数(R0寄存器),返回位置(LR寄存器),当前机器运行状态(CPSR寄存器)。

线程栈的增长方向是芯片架构密切相关的,对于ARM Cortex-M架构,线程栈可构造如下图所示。
在这里插入图片描述
线程栈大小可以这样设定,对于资源相对较大的 MCU,可以适当设计较大的线程栈;也可以在初始时设置较大的栈,例如指定大小为1K或者2K字节,也可以在初始时设置较大的栈,例如指定大小为1K或2K字节,然后在FinSH中用list_thread命令查看线程运行过程中线程所使用的栈的大小,通过此命令,能够看到从线程启动运行时,到当前时刻点,线程使用的最大栈深度,而后加上适当的余量形成最终的线程栈大小,最后对栈空间大小加以修改。

线程状态

线程运行的过程中,同一时间只允许一个线程在处理器中运行,从运行的过程上划分,线程有多种不同的运行状态,如初始状态、挂起状态、就绪状态等。

  • 初始状态:当线程刚开始创建还没开始运行时就处于初始状态;在初始状态下,线程不参与调度。
  • 就绪状态:在就绪状态下,线程按照优先级排队,等待被执行;一旦当前线程运行完毕让出处理器,操作系统会马上寻找最高优先级的就绪态线程运行。
  • 运行状态:线程当前正在运行。在单核系统中,只有rt_thread_self()函数返回的线程处于运行状态;在多核系统中,可能就不止这一个线程处于运行状态。
  • 挂起状态:也称阻塞态。它可能因为资源不可用而挂起等待,或线程主动延时一段时间而挂起。在挂起状态下,线程不参与调度。
  • 关闭状态:当前线程运行结束时处于关闭状态。关闭状态的线程不参与线程的调度。

线程优先级

RT-Thread 线程的优先级是表示线程被调度的优先程度。每个线程都具有优先级,线程越重要,赋予的优先级就应越高,线程被调度的可能才会越大。

RTT最大支持256个线程优先级(0~255),数值越小的优先级越高,0为最高优先级。
在一些资源比较紧张的系统中,可以根据实际情况只选择8个或32个优先级的系统配置。
对于ARM Cortex-M系列,普遍采用32个优先级。
最低优先级默认分配给空闲线程使用,用户一般不使用。

在系统中,当有比当前线程优先级更高的线程就绪时,当前线程将立刻被换出,高优先级线程抢占处理器运行。

时间片

每个线程都有时间片这个参数,但时间片仅对优先级相同的就绪态线程有效。
系统对优先级相同的就绪态线程采用时间片轮转的调度方式进行调度时,时间片起到约束线程单次运行时长的作用,其单位是一个系统节拍 (OS Tick)。
假设有2个优先级相同的就绪态线程A与B,A线程的时间片设置为10,B线程的时间片设置为5,那么当系统中不存在比 A 优先级高的就绪态线程时,系统会在 A、B 线程间来回切换执行,并且每次对 A 线程执行 10 个节拍的时长,对 B 线程执行 5 个节拍的时长,如下图。
在这里插入图片描述

线程的入口函数

线程控制块中的entry是线程的入口函数,它是线程实现预期功能的函数。线程的入口函数由用户设计实现,一般有以下两种代码形式:

无限循环模式
在实时系统中,线程通常是被动式的:这个是由实时系统的特性所决定的,实时系统总是等待外界事件的发生,而后进行相应的服务

void thread_entry(void *parameter)
{while(1){/*等待事件发生*//*对事件进行服务、进行处理*/}
}

线程看似没有什么限制程序执行的因素,似乎所有的操作都可以执行。但是作为一个实时系统,一个优先级明确的实时系统,如果一个线程中的程序陷入了死循环操作,那么比它优先级低的线程都将不能得到执行。
所以在实时操作系统中必须注意的一点就是:线程中不能陷入死循环操作,必须要有让出 CPU 使用权的动作,如循环中调用延时函数或者主动挂起。用户设计这种无限循环的线程的目的,就是为了让这个线程一直被系统循环调度运行,永不删除。

顺序执行或有限次循环模式
如简单的顺序语句、do while() 或 for()循环等,此类线程不会循环或不会永久循环,可谓是 “一次性” 线程,一定会被执行完毕。在执行完毕后,线程将被系统自动删除。

static void thread_entry(void* parameter)
{/* 处理事务 #1 *//* 处理事务 #2 *//* 处理事务 #3 */
}

线程错误码

一个线程就是一个执行场景,错误码是与执行环境密切相关的,所以每个线程配备了一个变量用于保存错误码,线程的错误码有以下几种:

#define RT_EOK           0 /* 无错误     */
#define RT_ERROR         1 /* 普通错误     */
#define RT_ETIMEOUT      2 /* 超时错误     */
#define RT_EFULL         3 /* 资源已满     */
#define RT_EEMPTY        4 /* 无资源     */
#define RT_ENOMEM        5 /* 无内存     */
#define RT_ENOSYS        6 /* 系统不支持     */
#define RT_EBUSY         7 /* 系统忙     */
#define RT_EIO           8 /* IO 错误       */
#define RT_EINTR         9 /* 中断系统调用   */
#define RT_EINVAL       10 /* 非法参数      */

线程状态切换

在这里插入图片描述
线程通过调用函数rt_thread_create/init()进入到初始状态;初始状态的线程通过调用函数startup()进入到就绪状态;就绪状态的线程被调度器调度后进入运行状态;当处于运行状态的线程调用 rt_thread_delay(),rt_sem_take(),rt_mutex_take(),rt_mb_recv() 等函数或者获取不到资源时,将进入到挂起状态;处于挂起状态的线程,如果等待超时依然未能获得资源或由于其它线程释放了资源,那么它将返回到就绪状态。
挂起状态的线程,如果调用 rt_thread_delete/detach() 函数,将更改为关闭状态(RT_THREAD_CLOSE);而运行状态的线程,如果运行结束,就会在线程的最后部分执行 rt_thread_exit() 函数,将状态更改为关闭状态。

系统线程

系统线程是指由系统创建的线程,用户线程是由用户程序调用线程管理接口创建的线程,在 RT-Thread 内核中的系统线程有空闲线程和主线程。

空闲线程

空闲线程(idle)是系统创建的最低优先级的线程,线程状态永远为就绪态。当系统中无其他就绪线程存在时,调度器将调度空闲线程,它通常是一个死循环,且永远不能被挂起。

若某线程运行完毕,系统将自动删除线程:自动执行rt_thread_exit()函数,先将该线程从系统就绪队列中删除,再将该线程的状态更改为关闭状态,不再参与系统调度,然后挂入rt_thread_defunct僵尸队列(资源未回收,处于关闭状态的线程队列)中,最后空闲线程会回收被删除线程的资源。

空闲线程也提供了接口来运行用户设置的钩子函数,在空闲线程运行时会调用钩子函数,适合处理功耗管理、看门狗喂狗等工作。
空闲线程必须有得到执行的机会,即其他线程不允许一直while(1)死卡,必须调用具有阻塞性质的函数;否则例如线程删除、回收等操作将无法得到正确执行。

主线程

在系统启动时,系统会创建main线程,它的入口函数为main_thread_entry(),用户的应用入口函数main()就是从这里真正开始的,系统调度器启动后,main 线程就开始运行,过程如下图,用户可以在 main() 函数里添加自己的应用程序初始化代码。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/606454.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Canvas图层saveLayer剪切clipPath原图addCircle绘制对应圆形区域,Kotlin(2)

Android Canvas图层saveLayer剪切clipPath原图addCircle绘制对应圆形区域,Kotlin(2) 在 Android Canvas图层saveLayer剪切clipRect原图对应Rect区域,Kotlin(1)-CSDN博客 的基础上,把矩形切图&a…

3.9 EXERCISES

矩阵加法需要两个输入矩阵A和B,并产生一个输出矩阵C。输出矩阵C的每个元素都是输入矩阵A和B的相应元素的总和,即C[i][j] A[i][j] B[i][j]。为了简单起见,我们将只处理元素为单精度浮点数的平方矩阵。编写一个矩阵加法内核和主机stub函数&am…

强化学习的数学原理学习笔记 - RL基础知识

文章目录 Roadmap🟡基础概念贝尔曼方程(Bellman Equation)基本形式矩阵-向量形式迭代求解状态值 vs. 动作值 🟡贝尔曼最优方程(Bellman Optimality Equation,BOE)基本形式迭代求解 本系列文章介…

DSP2335的时钟PLL配置

PLL模块框图 xclkin是直接进来的外部时钟; 而下面的是振荡器(晶振出来)的时钟 PLLSTS 锁相环状态寄存器 PLLCR 锁相环控制寄存器 PLLSTS【oscoff】 决定着外部时钟的输入 PLLSTS【plloff】 锁相器关闭位 0使能PLL 锁相环控制寄存器…

Hive 的 安装与部署

目录 1 安装 MySql2 安装 Hive3 Hive 元数据配置到 MySql4 启动 Hive Hive 官网 1 安装 MySql 为什么需要安装 MySql? 原因在于Hive 默认使用的元数据库为 derby,开启 Hive 之后就会占用元数据库,且不与其他客户端共享数据,如果想多窗口操作…

【Java集合篇】HashMap 是如何扩容的

HashMap 是如何扩容的 ✔️ 为什么需要扩容?✔️ 桶元素重新映射✔️链表重新链接✔️ 取消树化✔️拓展知识仓✔️除了rehash之外,哪些操作也会将树会退化成链表? ✔️ 为什么需要扩容? HashMap在Java等编程语言中被广泛使用,用于存储键值对数据。Ha…

【QML COOK】- 001-添加资源文件

1. 下图为要添加的资源文件 2. 将资源文件放置在工程目录中 我放在【Resources/Images】下,你随意 3. 添加qrc类型文件 文件->New File... 选择 Qt->Qt Resource File 填好文件名。我填“Images”你随意 出现名为“Images.qrc”的qrc类型文件 4. 添加资源文…

Ansible:简单、快速、安全、最强大的 IT 自动化系统 | 开源日报 No.140

ansible/ansible Stars: 59.6k License: GPL-3.0 Ansible 是一个极其简单的 IT 自动化系统,它处理配置管理、应用部署、云提供、临时任务执行、网络自动化和多节点编排。Ansible 使得像零停机滚动更新与负载均衡器一样复杂的更改变得容易。主要功能包括&#xff1…

【MATLAB第89期】基于MATLAB的差分自回归滑动平均模型ARIMA时间序列预测模型含预测未来

【MATLAB第89期】基于MATLAB的差分自回归滑动平均模型ARIMA时间序列预测模型含预测未来 往期文章 【MATLAB第82期】基于MATLAB的季节性差分自回归滑动平均模型SARIMA时间序列预测模型含预测未来 一、模型介绍 1、模型简介 差分自回归移动平均模型(Autoregressiv…

【BIAI】Lecture 5 - Auditory system

Lecture 5 - Auditory system 专业术语 auditory system 听觉系统 pinna 耳廓 auditory canal 耳道 tympanic membrane 鼓膜 cochlea 耳蜗 ossicles 听骨 auditory-vestibular nerve 前庭神经 oval window 椭圆窗 attenuation reflex 衰减反射 tensor tympani muscle 鼓膜张肌…

网络安全与IP地址:构建数字世界的前沿堡垒

网络安全是当今数字社会中不可忽视的挑战之一。而IP地址,作为互联网通信的基础协议,既是数字化时代的桥梁,也是网络安全的关键节点。本文将剖析IP地址在网络安全领域的作用,以及如何利用其特性建立有效的网络安全策略。 IP地址&a…

华为三层交换机通 过VLANIF虚拟接口实现跨VLAN通信

S1配置 vlan batch 2 to 3interface Vlanif2ip address 192.168.2.254 255.255.255.0interface Vlanif3ip address 192.168.3.254 255.255.255.0interface GigabitEthernet0/0/2port link-type accessport default vlan 2interface GigabitEthernet0/0/3port link-type access…

如何进行sql优化?

在日常工作中都避免不了要和各种SQL语句打交道,无论是开发还是后期维护,一条执行效率高的SQL语句都会对系统性能产生巨大影响。那么,如何进行有效的SQL优化呢?下面将为大家深入浅出地讲解SQL优化的各个方面: 1、了解数…

社科院与美国杜兰大学金融管理硕士项目——勇当开路先锋,争做事业闯将

随着金融行业的不断发展,在职金融人员面临着越来越多的机遇和挑战。在这个充满变革的时代,金融人员需要具备开拓进取的精神,勇当开路先锋,争做事业闯将。只有这样,才能在激烈的竞争中立于不败之地,为企业创…

算法32:针对算法31货币问题进行扩展,并对从左往右模型进行总结

本算法是在算法31的基础之上进行推理总结的,因此,在看本章之前,必须先去了解算法31,否则会觉得莫名其妙。 算法31的推理过程: 如果 x y1 y2 y3 y4 y5 y6. x1 y2 y3 y4 y5 y6 那么 x y1 x1. 根据以…

Codeforces Round 911 C. Anji‘s Binary Tree

原题: C. Anji’s Binary Tree time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input output standard output Keksic keeps getting left on seen by Anji. Through a mutual friend, he’s figured out that Anji really …

ECharts 图表简单示例,中国地图

目录 ECharts官网链接: [ECharts](https://echarts.apache.org/zh/index.html)在项目中引入 Apache ECharts柱状图折线图饼图仪表盘中国地图完整示例代码 ECharts官网链接: ECharts 在项目中引入 Apache ECharts <!DOCTYPE html> <html><head><meta char…

JavaWeb——后端AOP面向特定方法编程

七、AOP 1. 概述 AOP&#xff08;Aspect Oriented Programming&#xff09;&#xff1a;面向切面编程、面向方法编程&#xff0c;其实就是面向特定方法编程 场景&#xff1a; 案例部分功能运行较慢&#xff0c;定位执行耗时较长的业务方法&#xff0c;此时需要统计每个业务…

2024年数学建模美赛能用chatGPT之类的AI吗?官方给了明确规定!

这两年chatGPT等大语言模型火了&#xff0c;能对话&#xff0c;自然也能回答数学建模方面的问题。 那美赛能不能用这些AI呢&#xff1f;2024年美赛官方对chatGPT等的使用做出了明确的规定&#xff08;其中的VI. Contest Instructions部分&#xff09;&#xff1a; https://ww…

JavaScript高级程序设计读书记录(六):定型数组,Map

1. 定型数组 定型数组&#xff08;typed array&#xff09;是 ECMAScript 新增的结构&#xff0c;目的是提升向原生库传输数据的效率。实际上&#xff0c;JavaScript 并没有“TypedArray”类型&#xff0c;它所指的其实是一种特殊的包含数值类型的数组。 1.1 历史 随着浏览器…