24.排序,插入排序,交换排序

目录

一. 插入排序

(1)直接插入排序

(2)折半插入排序

(3)希尔排序

二. 交换排序

(1)冒泡排序

(2)快速排序


排序:将一组杂乱无章的数据按一定规律顺次排列起来。即,将无序序列排成一个有序序列(由小到大或由大到小)的运算。如果参加排序的数据结点包含多个数据域,那么排序往往是针对其中某个域而言。

排序方法:

  • 按数据存储介质:内部排序和外部排序
  • 按比较器个数:串行排序和并行排序
  • 按主要操作:比较排序基数排序(后面会讲)
  • 按辅助空间:原地排序和非原地排序
  • 按稳定性:稳定排序和非稳定排序
  • 按自然性:自然排序和非自然排序

本章学习内容:

  • 插入排序:直接插入排序、折半插入排序、希尔排序
  • 交换排序:冒泡排序、快速排序
  • 选择排序:简单选择排序、堆排序
  • 归并排序:2-路归并排序
  • 基数排序

衡量排序算法的指标有时间复杂度,空间复杂度和稳定性等。对于稳定性做一点说明。稳定排序指的是能够使任何数值相等的元素,排序以后相对次序不变。例如,下面的示例1是稳定排序,示例2就不是稳定排序。

排序的稳定牲只对结构类型数据排序有意义。例如:n个学生信息(学号、姓名、语文、数学、英语、总分),首先按数学成绩从高到低排序,然后按照总分从高到低排序。若是稳定排序,总分相同的情况下,数学成绩高的仍然排在前面。

存储结构:本章基于的存储结构均以顺序表存储。

#define MAXSIZE 20  //设记录不超过20个
typedef int KeyType;  //设关键字为整型量(int型)typedef struct{  //定义每个记录(数据元素)的结构KeyType key;  //关键字InfoType otherinfo;  //其它数据项
}RedType;  //Record Typetypedef struct{  //定义顺序表的结构RedType r[MAXSIZE+1];  //存储顺序表的向量//r[0]一般作哨兵或缓冲区int length;  //顺序表的长度
}SqList;

一. 插入排序

基本思想:每步将一个待排序的对象,按其关键码大小,插入到前面已经排好序的一组对象的适当位置上,直到对象全部插入为止。即边插入边排序。

根据确定插入位置的方法不同,我们可以有以下三种插入排序的方法:

(1)直接插入排序

顺序法定位插入位置:一个一个比较。

  • 首先,复制待插入的元素,复制插入元素。x=a[i];
  • 然后,记录后移,查找插入位置;for(j=i-1; j>=0&&x<a[j];j--),a[j+1]=a[j];
  • 最后,插入到正确位置,a[j+1]=x;

对于复制待插入的元素,我们可以使用哨兵。把待插入的元素复制到0号位,这样省去了越界的判断:

此外,如果待插入元素比有序表最后一位还大,那就不用进行任何操作了,这个位置就是待插入元素的位置。

void InsertSort(SqList &L){int i, j;for(i=2; i<=L.length; ++i){  //第1个元素不用排序,从插入第2个元素开始if (L.r[i].key < L.r[i-1].key){  //若"<",需将L.r[i]插入有序子表L.r[0]=L.r[i];  //复制为哨兵for(j=i-1; L.r[0].key<L.r[j].key; --j){L.r[j+1]=L.r[j];  //记录后移}L.r[j+1]=L.r[0];  //插入到正确位置}}
}

下面我们来分析时间效率。实现排序的基本操作有两个:(1)“比较”序列中两个关键字的大小;(2)“移动”记录。最好的情况是,关键字在记录序列中顺序有序。这时比较的次数是\sum_{i=2}^{n}1=n-1,不需要移动。最坏的情况是,关键字在记录序列中逆序有序。这时比较的次数是\sum_{i=2}^{n}i=\frac{(n+2)(n-1)}{2},移动的次数是\sum_{i=2}^{n}(i+1)=\frac{(n+4)(n-1)}{2},从而我们可以得到以下结论:

  • 原始数据越接近有序,排序速度越快;
  • 最坏情况下(输入数据是逆有序的)Tw(n)=O(n^2);
  • 平均情况下,耗时差不多是最坏情况的一半Te(n)=O(n^2);
  • 空间复杂度是O(1);
  • 要提高查找速度,可以从减少元素的比较次数和减少元素的移动次数入手;

(2)折半插入排序

查找插入位置采用折半查找法。

void BlnsertSort (SqList &L){for (i = 2; i<= L.length ; ++i){  //依次插入第2~第n个元素L.r[0] = L.r[i];  //当前插入元素存到“哨兵”位置low = 1 ; high = i-1;  //采用二分查找法查找插入位置while (low <= high){mid = (low + high)/2;if (L.r[0].key < L.r[mid].key) high = mid-1;else low = mid + 1;}  //循环结束,high+1则为插入位置for (j=i-1; j>=high+1; --j) L.r[j+1] = L.r[j];  //移动元素L.r[high+1] = L.r[0];  //插入到正确位置
}// BInsertSort

最后我们分析算法的时间效率。折半查找比顺序查找快,所以折半插入排序就平均性能来说比直按插入排序要快。它所需要的关键码比较次数与待排序对象序列的初始排列无关,仅依赖于对象个数。在插入第i个对象时,需要经过\left \lfloor log_2i \right \rfloor+1次关键码比较,才能确定它应插入的位置。

当n较大时,总关键码比较次数比直接插入排序的最坏情况要好得多,但比其最好情况要差。在对象的初始排列已经按关键码排好序或接近有序时,直接插入排序比折半插入排序执行的关键码比较次数要少。对移动次数,折半插入排序的对象移动次数与直接插入排序相同,依赖于对象的初始排列。所以折半插入排序减少了比较次数,但没有减少移动次数。平均性能优于直接插入排序。其时间复杂度为O(n^2),空间复杂度是O(1),是一种稳定的排序方法。

(3)希尔排序

直接排序什么时候效率较高?一是序列基本有序,二是序列长度较小。基于此我们提出希尔排序的基本思路:先将整个待排记录序列分割成若干子序列,分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行一次直接插入排序。希尔排序的算法特点是:

  • 一次移动,移动位置较大,跳跃式地接近排序后的最终位置
  • 最后一次只需要少量移动
  • 增量序列必须是递减的,最后一个必须是1
  • 增量序列应该是互质的

首先:定义增量序列D_k:D_M>D_{M-1}>...>D_1=1,刚才的例子中D=[5,3,1]
然后:对每个D_k进行“D_k-间隔”插入排序(k=M,M-1,...1)。

//主程序
void ShellSort(Sqlist &L,int dlta[],int t){//按增量序列dlta[0..t-1]对顺序表L作希尔排序,t是增量序列的长度for(k=O; k<t; ++k)Shellnsert(L,dlta[k]);  //一趟增量为dlta[k]的插入排序
}//ShellSortvoid ShellInsert(SqList &L,int dk){  //对顺序表L进行一趟增量为dk的Shell排序,dk为步长因子//和一趟直接插入排序相比,做了以下修改://1.前后记录位置的增量是dk,不是1//2.r[0]只是暂存单元,不是哨兵,当j<=0时,插入位置已找到for(i = dk+1; i <= L.length; ++i)  //dk间隔排序,从dk+1开始排序,例如前面讲的一趟直接插入排序从第2个元素开始排序if(r[i].key < r[i-dk].key){  //比前面的大则不需要执行插入操作L.r[0] = L.r[i];  //暂存在L.r[0]for(j = i-dk; j>0 &&(r[0].key < r[j].key); j = j-dk)r[j+dk]=r[j];  //后移L.r[j+dk]=L.r[0];  //插入,退出循环时r[j]<r[0],所以插到L.r[j+dk]的位置}
}

希尔排序的算法效率与增量序列的取值有关。

对于Hibbard增量序列,D_k=2^k-1,相邻元素互质。最坏情况T_{worst}=O(n^{3/2});猜想:T_{avg}=O(n^{5/4})
Sedgewick增量序列{1,5,19,41,109...},D_k=9*4^i-9*2^i+1D_k=4^i-3*2^i+1。猜想:T_{avg}=O(n^{7/6})T_{worst}=O(n^{4/3})

希尔排序法是一种不稳定的排序算法,例如对下面d=2的情况:

总结:对希尔排序来说,时间复杂度是n和d的函数,空间复杂度是O(1),是一种不稳定的排序方法。关于如何选择最佳d序列,目前尚未有解决方案。但是,最后一个增量值必须为1,其他序列元素之间无除了1之外的公因子。此外,希尔排序不宜在链式存储结构上实现。

二. 交换排序

基本思想:两两比较,如果发生逆序则交换,直到所有记录都排好序为止。

常见的交换排序方法:冒泡排序,快速排序。

(1)冒泡排序

给定初始序列:21,25,49,25*,16,08,n=6。

第1趟:
位置0,1进行比较——判断——不交换——结果:21,25,49,25*,16,08

位置1,2进行比较——判断——不交换——结果:21,25,49,25*,16,08

位置2,3进行比较——判断——交换——结果:21,25,25*,49,16,08

位置3,4进行比较——判断——交换——结果:21,25,25*,16,49,08

位置4,5进行比较——判断——交换——结果:21,25,25*,16,08,49

第1趟结束后:21,25,25*,16,08,49
第2趟:

位置0,1进行比较——判断——不交换——结果:21,25,25*,16,08,49

位置1,2进行比较——判断——不交换——结果:21,25,25*,16,08,49

位置2,3进行比较——判断——交换——结果:21,25,16,25*,08,49

位置3,4进行比较——判断——交换——结果:21,25,16,08,25*,49

第2趟结束后:21,25,16,08,25*,49

继续下一趟,每一趟增加一个有序元素。
第3趟结果:21,16,08,25,25*,49

第4趟结果:16,08,21,25,25*,49

第5趟结果:08,16,21,25,25*,49

总结:n个记录,需要比较n-1趟。第m趟需要比较n-m次。

void bubble_sort(SqList &L){  //冒泡排序算法int m,i,j; RedType x;  //交换时临时存储for(m=1; m<=n-1; m++){  //总共需n-1趟for(j=1; j<=n-m; j++)  //第m趟需要比较n-m次if(L.r[j].key > L.r[j+1].key){  //发生逆序x=L.r[j]; L.r[j]=L.r[j+1]; L.r[j+1]=x;  //交换}//endif}//for
}

冒泡排序的优点:每趟结束时,不仅能挤出一个最大值到最后面位置,还能同的部力理顺其他元素。实际上,一旦某一趟比较时不出现记录交换,说明已排好序了,就可以结束本算法。所以我们可以增设一个标识flag:

void bubble_sort(SqList &L){  //改进的冒泡排序算法int m,i,j;flag=1;  //flag作为是否有交换的标记RedType x; for(m=1; m<=n-1 && flag==1; m++){flag=0;for(j=1; j<=n-m; j++){if(L.r[j].key>L.r[j+1].key){//发生逆序flag=1;  //发生交换,flag置为1,若本趟没发生交换,flag保持为零x=L.r[j]; L.r[j]=L.r[j+1]; L.r[j+1]=x;  //交换}//endif}//for}
}

下面分析时间复杂度。最好情况是全为正序,这时比较次数是n-1,移动的次数是0;最坏情况是全为逆序,比较次数是\sum_{i=1}^{n-1}(n-i)=\frac{1}{2}(n^2-n),移动次数是3\sum_{i=1}^{n-1}(n-i)=\frac{3}{2}(n^2-n)(包含向中间辅助变量x移动)。所以,冒泡排序最好时间复杂度是O(n),最坏时间复杂度为O(n^2),平均时间复杂度为O(n^2)。冒泡排序算法中增加一个辅助空间temp,辅助空间为S(n)=O(1),冒泡排序是稳定的排序算法。

(2)快速排序

快速排序是一种改进的交换排序。基本思想是递归思想:任取一个元素(如:第一个)为中心pivot,所有比它小的元素一律前放,比它大的元素一律后放,形成左右两个子表。对各子表重新选择中心元素并依此规则调整,直到每个子表的元素只剩一个(结束条件)。下面的过程,每个表中都选取第一个作为中心点(分界点)。

例如:给定序列

序列共8个数,界点直接取第一个数49,并把它搬到0号位。指针low=1,high=8.由于第1个位置已空,我们从后往前移动high,找一个小于界点的数把它搬到1号位。high--,当high=7的时候,数27满足,把27搬到1号位。此时7位空出来,我们向后移动low,找一个大于界点的数搬到空出来的7号位。low++,当low=3的时候,数65满足,把65搬到7号位,此时3号位空出来。我们再往前移动high,找一个大于界点的数搬到3号位。当high=6,数字13符合,13搬到3号位,6号位又空出。继续往后移动low,low=4,数97符合,97搬到6号位,4号位空出。然后往前移动high,high=5没有符合题意的,继续向前移动至high=4,此时high与low都重合。再把界点49填到4号位。此时8个数字的表就能以4号位49为界分成两个子表:前面1-3位,后面5-8位。然后在对两个子表分别执行相同的操作。

总结:①每一趟的子表的形成是采用从两头向中间交替式逼近法;②由于每趟中对各子表的操作都相似,可采用递归算法。

void main(){QSort(L, 1, L.length);
}void QSort(SqList &L, int low, int high){  //对顺序表L快速排序if(low < high){  //长度大于1pivotloc = Partition(L, low, high);//将L一分为二,pivotloc为中心点元素排好序的位置QSort(L, low, pivotloc-1);  //对低子表递归排序QSort(L, pivotloc+1, high);  //对高子表递归排序}//end if 
}//QSortint Partition(SqList &L, int low, int high){L.r[0] = L.r[low];  //取[low,high]的第一个元素作为中心点,并搬前面去 pivotkey = L.r[low].key;  //这里也是取中心点while (low < high){  //循环终止的条件是low=highwhile (low < high && L.r[high].key >= pivotkey) --high;  //low指针指的地方空出,前移high,直到找到一个小于pivotkey的L.r[low] = L.r[high];  //然后搬到空出的地方low,此时high又空出来while (low < high && L.r[low].key <= pivotkey) ++low;  //high指针指的地方空出,后移low,直到找到一个大于pivotkey的L.r[high] = L.r[low];  //然后搬到空出的地方high,此时low又空出来}L.r[low]=L.r[0];  //退出循环,再把最后指针重合的地方就是空的地方,填回中心点return low;  //返回中心点所在的位置
}

下面分析算法效率:可以证明,时间复杂度是O(nlog_2n),其中对上面的Qsort()是O(log_2n),对下面的Partition()是O(n)。实验结果表明:就平均计算时间而言,快速排序是我们所讨论的所有内排序方法中最好的一个。

接下来分析空间复杂度:快速排序不是原地排序。由于程序中使用了递归,需要递归调用栈的支持,而栈的长度取决于递归调用的深度(即使不用递归,也需要用用户栈)。在平均情况下,需要O(logn)的栈空间;最坏情况下,栈空间可达O(n)。

快速排序同前面的希尔排序,它也是不稳定的排序算法。例如:49,38,49*,20,97,76,经过一次划分后:20,38,49*,49,97,76。

快速排序不适于对原本有序或基本有序的记录序列进行排序。例如,对(46,50,68,74,79,85,90)进行快速排序,会发现:由于每次枢轴记录的关键字都是小于其它所有记录的关键字,致使一次划分之后得到的子序列(1)的长度为0,这时已经退化成为没有改进措施的冒泡排序。

划分元素的选取是影响时间性能的关键。输入数据次序越乱,所选划分元素值的随机性越好,排序速度反而越快,快速排序不是自然排序方法。需要注意的是,改变划分元素的选取方法,至多只能改变算法平均情况的下的世界性能,无法改变最坏情况下的时间性能。即最坏情况下,快速排序的时间复杂度总是O(n^2)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/60633.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高可用集群介绍

一、高可用集群概念 高可用集群&#xff08; High Availability Cluster, HA 集群&#xff09;&#xff0c;其中高可用的含义是最大限度地可以使用。从集群 的名字上可以看出&#xff0c;此类集群实现的功能是保障用户的应用程序持久、不间断地提供服务。当应用程序出现故障或…

【笔记】PyCharm快捷键大全

PyCharm是一种Python集成开发环境&#xff08;IDE&#xff09;&#xff0c;由JetBrains公司开发。它被认为是Python开发中最强大、最流行的IDE之一。PyCharm具有完整的Python开发工具链&#xff0c;包括先进的代码编辑器、代码分析工具、集成的调试器、版本控制系统集成、自动化…

前端将UTC时间格式转化为本地时间格式-uniapp写法

UTC时间格式是什么 首先我们先简单的了解一下&#xff1a;UTC时间&#xff08;协调世界时&#xff0c;Coordinated Universal Time&#xff09;使用24小时制&#xff0c;以小时、分钟、秒和毫秒来表示时间 HH:mm:ss.SSSHH 表示小时&#xff0c;取值范围为00到23。mm 表示分钟…

Python股票交易---均值回归

免责声明&#xff1a;本文提供的信息仅用于教育目的&#xff0c;不应被视为专业投资建议。在做出投资决策时进行自己的研究并谨慎行事非常重要。投资涉及风险&#xff0c;您做出的任何投资决定完全由您自己负责。 在本文中&#xff0c;您将了解什么是均值回归交易算法&#xff…

ChatGPT癌症治疗“困难重重”,真假混讲难辨真假,准确有待提高

近年来&#xff0c;人工智能在医疗领域的应用逐渐增多&#xff0c;其中自然语言处理模型如ChatGPT在提供医疗建议和信息方面引起了广泛关注。然而&#xff0c;最新的研究表明&#xff0c;尽管ChatGPT在许多领域取得了成功&#xff0c;但它在癌症治疗方案上的准确性仍有待提高。…

leetcode 392. 判断子序列

2023.8.25 本题要判断子序列&#xff0c;可以使用动态规划来做&#xff0c;定义一个二维dp数组。 接下来就是常规的动态规划求解子序列的过程。 给出两种定义dp数组的方法。 二维bool型dp数组&#xff1a; class Solution { public:bool isSubsequence(string s, string t) …

在云原生环境中构建可扩展的大数据平台:方法和策略

文章目录 1. **选择适当的云提供商&#xff1a;**2. **采用容器化和微服务架构&#xff1a;**3. **分层架构设计&#xff1a;**4. **弹性计算资源&#xff1a;**5. **使用分布式计算框架&#xff1a;**6. **数据分区和分片&#xff1a;**7. **使用列式存储&#xff1a;**8. **缓…

qt day 1

this->setWindowIcon(QIcon("D:\\zhuomian\\wodepeizhenshi.png"));//設置窗口的iconthis->setWindowTitle("鵬哥快聊");//更改名字this->setFixedSize(500,400);//設置尺寸QLabel *qlnew QLabel(this);//創建一個標簽ql->resize(QSize(500,20…

【计算机视觉|生成对抗】用于高保真自然图像合成的大规模GAN训练用于高保真自然图像合成的大规模GAN训练(BigGAN)

本系列博文为深度学习/计算机视觉论文笔记&#xff0c;转载请注明出处 标题&#xff1a;Large Scale GAN Training for High Fidelity Natural Image Synthesis 链接&#xff1a;[1809.11096] Large Scale GAN Training for High Fidelity Natural Image Synthesis (arxiv.org…

Rabbitmq消息积压问题如何解决以及如何进行限流

一、增加处理能力 优化系统架构、增加服务器资源、采用负载均衡等手段&#xff0c;以提高系统的处理能力和并发处理能力。通过增加服务器数量或者优化代码&#xff0c;确保系统能够及时处理所有的消息。 二、异步处理 将消息的处理过程设计为异步执行&#xff0c;即接收到消息…

基于机器学习的fNIRS信号质量控制方法

摘要 尽管功能性近红外光谱(fNIRS)在神经系统研究中的应用越来越广泛&#xff0c;但fNIRS信号处理仍未标准化&#xff0c;并且受到经验和手动操作的高度影响。在任何信号处理过程的开始阶段&#xff0c;信号质量控制(SQC)对于防止错误和不可靠结果至关重要。在fNIRS分析中&…

FreeSWITCH 1.10.10 简单图形化界面5 - 使用百度TTS

FreeSWITCH 1.10.10 简单图形化界面5 - 使用百度TTS 0、 界面预览1、注册百度AI开放平台&#xff0c;开通语音识别服务2、获取AppID/API Key/Secret Key3、 安装百度语音合成sdk4、合成代码5、在PBX中使用百度TTS6、音乐文件-TTS7、拨号规则-tts_command 0、 界面预览 http://…

网络有源号角(50W-100W)社区小区广播 工地语音播报,隧道广播,钢铁广播广播系统

网络有源号角&#xff08;50W-100W&#xff09;社区小区广播 工地语音播报&#xff0c;隧道广播&#xff0c;钢铁广播广播系统 SV-7042T 50W网络有源号角 SV-7042T是深圳锐科达电子有限公司的一款壁挂式网络有源号角&#xff0c;具有10/100M以太网接口&#xff0c;可将网络音…

ceph源码阅读 erasure-code

1、ceph纠删码 纠删码(Erasure Code)是比较流行的数据冗余的存储方法&#xff0c;将原始数据分成k个数据块(data chunk)&#xff0c;通过k个数据块计算出m个校验块(coding chunk)。把nkm个数据块保存在不同的节点&#xff0c;通过n中的任意k个块还原出原始数据。EC包含编码和解…

解密Spring MVC异常处理:从局部到全局,打造稳固系统的关键步骤

&#x1f600;前言 在现代软件开发中&#xff0c;异常处理是不可或缺的一部分&#xff0c;它能够有效地提高系统的稳定性和健壮性。在Spring MVC框架中&#xff0c;异常处理机制起着至关重要的作用&#xff0c;它允许开发者在程序运行过程中捕获、处理和报告异常&#xff0c;从…

Qt/C++编写视频监控系统80-远程回放视频流

一、前言 远程回放NVR或者服务器上的视频文件&#xff0c;一般有三种方式&#xff0c;第一种是调用厂家的SDK&#xff0c;这个功能最全&#xff0c;但是缺点明显就是每个厂家的设备都有自己的SDK&#xff0c;只兼容自家的设备&#xff0c;如果你的软件需要接入多个厂家的&…

【深入解读Redis系列】Redis系列(五):切片集群详解

首发博客地址 https://blog.zysicyj.top/ 系列文章地址[1] 如果 Redis 内存很大怎么办&#xff1f; 假设一台 32G 内存的服务器部署了一个 Redis&#xff0c;内存占用了 25G&#xff0c;会发生什么&#xff1f; 此时最明显的表现是 Redis 的响应变慢&#xff0c;甚至非常慢。 这…

分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测

分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测 目录 分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测…

数学建模:数据的预处理

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 文章目录 数据预处理数据变换数据清洗缺失值处理异常值处理 数据预处理 数据变换 常见的数据变换的方式&#xff1a;通过某些简单的函数进行数据变换。 x ′ x 2 x ′ x x ′ log ⁡ ( x ) ∇ f ( x k )…

Redis 持久化和发布订阅

一、持久化 Redis 是内存数据库&#xff0c;如果不将内存中的数据库状态保存到磁盘&#xff0c;那么一旦服务器进程退出&#xff0c;服务器中的数据库状态也会消失。所以 Redis 提供了持久化功能&#xff01; 1.1、RDB&#xff08;Redis DataBase&#xff09; 1.1.1 …