【langchain】入门初探实战笔记(Chain, Retrieve, Memory, Agent)

1. 简介

1.1 大语言模型技术栈

大语言模型技术栈
大语言模型技术栈由四个主要部分组成:

  • 数据预处理流程(data preprocessing pipeline)
  • 嵌入端点(embeddings endpoint )+向量存储(vector store)
  • LLM 终端(LLM endpoints)
  • LLM 编程框架(LLM programming framework)

1.2 Langchain的简介和部署

LangChain 就是一个 LLM 编程框架,你想开发一个基于 LLM 应用,需要什么组件它都有,直接使用就行;甚至针对常规的应用流程,它利用链(LangChain中Chain的由来)这个概念已经内置标准化方案了。

安装langchain包

pip install langchain

调用openai接口

pip install openai

在代码里调用需要设置openai的api key,有两种方法,一种是在bashrc的文件中配置,另一种直接在调用的函数里设置openai的key值配置

openai的key可以通过https://platform.openai.com/api-keys 官网的连接获取

2. 大模型交互

openai接口代码调用示例

# openai_api_key = ""
# Importing modules
from langchain.llms import OpenAI
# Here we are using text-ada-001 but you can change it
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParseroutput_parser = StrOutputParser()
prompt = ChatPromptTemplate.from_messages([("system", "You are world class technical documentation writer."),("user", "{input}")
])
llm = ChatOpenAI(openai_api_key = "")
# chain = prompt | llm
# print("prompt:", prompt)
# print("chain:", chain)
chain = prompt | llm | output_parser
res = chain.invoke("how can langsmith help with testing?")
print(res)

输出

content="Langsmith can help with testing in several ways:\n\n1. Test Automation: Langsmith can generate automated test scripts that cover various test scenarios and execute them repeatedly. This helps in reducing manual effort and time required for testing.\n\n2. Test Data Generation: Langsmith can generate test data that covers a wide range of input values and boundary conditions. This helps in testing the robustness and reliability of the system.\n\n3. Test Case Generation: Langsmith can generate test cases based on the specifications or requirements provided. These test cases can cover various combinations of inputs and expected outputs, ensuring comprehensive testing.\n\n4. Regression Testing: Langsmith can automate the execution of regression tests, which are performed to ensure that existing functionality is not impacted by any new changes or updates.\n\n5. Performance Testing: Langsmith can generate test scripts to simulate high loads and stress on the system, enabling performance testing and identifying potential bottlenecks or performance issues.\n\n6. Security Testing: Langsmith can help in identifying security vulnerabilities by generating test cases that simulate different attack scenarios, such as SQL injection or cross-site scripting.\n\nOverall, Langsmith's capabilities in generating automated test scripts, test data, test cases, and supporting various types of testing can significantly improve the efficiency and effectiveness of the testing process.

3. Chain

3.1 LLM Chain

最基本的链为 LLMChain,由 PromptTemplate、LLM 和 OutputParser 组成。LLM 的输出一般为文本,OutputParser 用于让 LLM 结构化输出并进行结果解析,方便后续的调用。

在这里插入图片描述

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
# from azure_chat_llm import llm
from langchain.chat_models import ChatOpenAI#output parser
keyword_schema = ResponseSchema(name="keyword", description="评论的关键词列表")
emotion_schema = ResponseSchema(name="emotion", description="评论的情绪,正向为1,中性为0,负向为-1")
response_schemas = [keyword_schema, emotion_schema]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()#prompt template
prompt_template_txt = '''
作为资深客服,请针对 >>> 和 <<< 中间的文本识别其中的关键词,以及包含的情绪是正向、负向还是中性。
>>> {text} <<<
RESPONSE:
{format_instructions}
'''prompt = PromptTemplate(template=prompt_template_txt, input_variables=["text"],partial_variables={"format_instructions": format_instructions})
llm = ChatOpenAI(openai_api_key = "")
#llmchain
llm_chain = LLMChain(prompt=prompt, llm=llm)
comment = "京东物流没的说,速度态度都是杠杠滴!这款路由器颜值贼高,怎么说呢,就是泰裤辣!这线条,这质感,这速度,嘎嘎快!以后妈妈再也不用担心家里的网速了!"
result = llm_chain.run(comment)
data = output_parser.parse(result)
print(f"type={type(data)}, keyword={data['keyword']}, emotion={data['emotion']}")

在这里插入图片描述

3.2 Sequential Chain

SequentialChains 是按预定义顺序执行的链。SimpleSequentialChain 为顺序链的最简单形式,其中每个步骤都有一个单一的输入 / 输出,一个步骤的输出是下一个步骤的输入。SequentialChain 为顺序链更通用的形式,允许多个输入 / 输出。

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains import SimpleSequentialChain
from langchain.chat_models import ChatOpenAIllm = ChatOpenAI(openai_api_key = "")
first_prompt = PromptTemplate.from_template("翻译下面的内容到中文:""\n\n{content}"
)
# chain 1: 输入:Review 输出: 英文的 Review
chain_trans = LLMChain(llm=llm, prompt=first_prompt, output_key="content_zh")second_prompt = PromptTemplate.from_template("一句话总结下面的内容:""\n\n{content_zh}"
)chain_summary = LLMChain(llm=llm, prompt=second_prompt)
overall_simple_chain = SimpleSequentialChain(chains=[chain_trans, chain_summary],verbose=True)
content = '''In a blog post authored back in 2011, Marc Andreessen warned that, “Software is eating the world.” Over a decade later, we are witnessing the emergence of a new type of technology that’s consuming the world with even greater voracity: generative artificial intelligence (AI). This innovative AI includes a unique class of large language models (LLM), derived from a decade of groundbreaking research, that are capable of out-performing humans at certain tasks. And you don’t have to have a PhD in machine learning to build with LLMs—developers are already building software with LLMs with basic HTTP requests and natural language prompts.
In this article, we’ll tell the story of GitHub’s work with LLMs to help other developers learn how to best make use of this technology. This post consists of two main sections: the first will describe at a high level how LLMs function and how to build LLM-based applications. The second will dig into an important example of an LLM-based application: GitHub Copilot code completions.
Others have done an impressive job of cataloging our work from the outside. Now, we’re excited to share some of the thought processes that have led to the ongoing success of GitHub Copilot.
'''
result = overall_simple_chain.run(content)
print(f'result={result}')

在这里插入图片描述

3.3 RouterChain

在这里插入图片描述

4. 外部文档检索

索引和外部数据进行集成,用于从外部数据获取答案。

  • 通过 Document Loaders 加载各种不同类型的数据源,

LangChain 通过 Loader 加载外部的文档,转化为标准的 Document 类型。Document 类型主要包含两个属性:page_content 包含该文档的内容。meta_data 为文档相关的描述性数据,类似文档所在的路径等。

  • 通过 Text Splitters 进行文本语义分割

LLM 一般都会限制上下文窗口的大小,有 4k、16k、32k 等。针对大文本就需要进行文本分割,常用的文本分割器为 RecursiveCharacterTextSplitter,可以通过 separators 指定分隔符。其先通过第一个分隔符进行分割,不满足大小的情况下迭代分割。

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 通过 Vectorstore 进行非结构化数据的向量存储

通过 Text Embedding models,将文本转为向量,可以进行语义搜索,在向量空间中找到最相似的文本片段。目前支持常用的向量存储有 Faiss、Chroma 等。

  • 通过 Retriever 进行文档数据检索

Retriever 接口用于根据非结构化的查询获取文档,一般情况下是文档存储在向量数据库中。可以调用 get_relevant_documents 方法来检索与查询相关的文档。

在这里插入图片描述

from langchain import FAISS
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter#通过 Document Loaders 加载各种不同类型的数据源
#LangChain 通过 Loader 加载外部的文档,转化为标准的 Document 类型。
# Document 类型主要包含两个属性:page_content 包含该文档的内容。meta_data 为文档相关的描述性数据,类似文档所在的路径等。
loader = WebBaseLoader("https://in.m.jd.com/help/app/register_info.html")
data = loader.load()#针对大文本就需要进行文本分割,常用的文本分割器为 RecursiveCharacterTextSplitter,可以通过 separators 指定分隔符。
# 其先通过第一个分隔符进行分割,不满足大小的情况下迭代分割。
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(model_name="gpt-3.5-turbo",allowed_special="all",separators=["\n\n", "\n", "。", ","],chunk_size=800,chunk_overlap=0
)
docs = text_splitter.split_documents(data)
#通过cache_folder设置自己的本地模型路径
#embeddings = HuggingFaceEmbeddings(model_name="text2vec-base-chinese", cache_folder="models")#通过 Text Embedding models,将文本转为向量,可以进行语义搜索,在向量空间中找到最相似的文本片段。
# 目前支持常用的向量存储有 Faiss、Chroma 等。
embeddings = HuggingFaceEmbeddings()vectorstore = FAISS.from_documents(docs, embeddings)#Retriever 接口用于根据非结构化的查询获取文档,一般情况下是文档存储在向量数据库中。
# 可以调用 get_relevant_documents 方法来检索与查询相关的文档。
result = vectorstore.as_retriever().get_relevant_documents("用户注册资格")
print(result)
print(len(result))

在这里插入图片描述

5. 外部文档交互

5.1 Stuff

StuffDocumentsChain 这种链最简单直接,是将所有获取到的文档作为 context 放入到 Prompt 中,传递到 LLM 获取答案

这种方式可以完整的保留上下文,调用 LLM 的次数也比较少,建议能使用 stuff 的就使用这种方式。其适合文档拆分的比较小,一次获取文档比较少的场景,不然容易超过 token 的限制。

在这里插入图片描述

5.2 Refine

RefineDocumentsChain 是通过迭代更新的方式获取答案。先处理第一个文档,作为 context 传递给 llm,获取中间结果 intermediate answer。然后将第一个文档的中间结果以及第二个文档发给 llm 进行处理,后续的文档类似处理。

Refine 这种方式能部分保留上下文,以及 token 的使用能控制在一定范围。

在这里插入图片描述

5.3 MapReduce

MapReduceDocumentsChain 先通过 LLM 对每个 document 进行处理,然后将所有文档的答案在通过 LLM 进行合并处理,得到最终的结果。

MapReduce 的方式将每个 document 单独处理,可以并发进行调用。但是每个文档之间缺少上下文。

在这里插入图片描述

5.4 MapRerank

MapRerankDocumentsChain 和 MapReduceDocumentsChain 类似,先通过 LLM 对每个 document 进行处理,每个答案都会返回一个 score,最后选择 score 最高的答案。

MapRerank 和 MapReduce 类似,会大批量的调用 LLM,每个 document 之间是独立处理

在这里插入图片描述

6. Memory

正常情况下 Chain 无状态的,每次交互都是独立的,无法知道之前历史交互的信息。LangChain 使用 Memory 组件保存和管理历史消息,这样可以跨多轮进行对话,在当前会话中保留历史会话的上下文。Memory 组件支持多种存储介质,可以与 Monogo、Redis、SQLite 等进行集成,以及简单直接形式就是 Buffer Memory。常用的 Buffer Memory 有:

  • ConversationSummaryMemory :以摘要的信息保存记录
  • ConversationBufferWindowMemory:以原始形式保存最新的 n 条记录
  • ConversationBufferMemory:以原始形式保存所有记录
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemoryfrom langchain.chat_models import ChatOpenAIllm = ChatOpenAI(openai_api_key = "")memory = ConversationBufferMemory()
conversation = ConversationChain(llm=llm, memory=memory, verbose=True)
print(conversation.prompt)
print(conversation.predict(input="我的姓名是tiger"))
print(conversation.predict(input="1+1=?"))
print(conversation.predict(input="我的姓名是什么"))

请添加图片描述

7. Agents

传统使用 LLM,需要给定 Prompt 一步一步的达成目标,通过 Agent 是给定目标,其会自动规划并达到目标。

目前这个领域特别活跃,诞生了类似 AutoGPT、BabyAGI、AgentGPT 等一堆优秀的项目。

目前的大模型一般都存在知识过时、逻辑计算能力低等问题,通过 Agent 访问工具,可以去解决这些问题。

  • Agent:代理,负责调用 LLM 以及决定下一步的 Action。其中 LLM 的 prompt 必须包含 agent_scratchpad 变量,记录执行的中间过程
  • Tools:工具,Agent 可以调用的方法。LangChain 已有很多内置的工具,也可以自定义工具。注意 Tools 的 description 属性,LLM 会通过描述决定是否使用该工具。
  • ToolKits:工具集,为特定目的的工具集合。类似 Office365、Gmail 工具集等
  • Agent Executor:Agent 执行器,负责进行实际的执行。
from langchain.agents import load_tools, initialize_agent, tool
from langchain.agents.agent_types import AgentType
from datetime import date
from langchain.chat_models import ChatOpenAIllm = ChatOpenAI(openai_api_key = "")#有多种方式可以自定义 Tool,最简单的方式是通过 @tool 装饰器,将一个函数转为 Tool。
# 注意函数必须得有 docString,其为 Tool 的描述。
@tool
def time(text: str) -> str:"""返回今天的日期。"""return str(date.today())tools = load_tools(['llm-math'], llm=llm)
tools.append(time)
#一般通过 initialize_agent 函数进行 Agent 的初始化,除了 llm、tools 等参数,还需要指定 AgentType。
#该 Agent 为一个 zero-shot-react-description 类型的 Agent,其中 zero-shot 表明只考虑当前的操作,不会记录以及参考之前的操作。react 表明通过 ReAct 框架进行推理,description 表明通过工具的 description 进行是否使用的决策。
agent_math = initialize_agent(agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,tools=tools,llm=llm,verbose=True)
print(agent_math("计算45 * 54"))
print(agent_math("今天是哪天?"))
#可以通过 agent.agent.llm_chain.prompt.template 方法,获取其推理决策所使用的模板。
print(agent_math.agent.llm_chain.prompt.template)

请添加图片描述

参考文献

知乎langchain到底该怎么使用,大家在项目中实践有成功的案例吗?https://www.zhihu.com/question/609483833/answer/3146379316?utm_psn=1725522909580394496

知乎小白入门大模型:LangChain https://zhuanlan.zhihu.com/p/656646499

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/606120.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

*4.3 CUDA MEMORY TYPES

CUDA设备包含几种类型的内存&#xff0c;可以帮助程序员提高计算到全局内存的访问率&#xff0c;从而实现高执行速度。图4.6显示了这些CUDA设备内存。全局内存和恒定内存出现在图片的底部。主机可以通过调用API函数来写入&#xff08;W&#xff09;和读取&#xff08;R&#xf…

Hadoop集群环境下HDFS实践编程过滤出所有后缀名不为“.abc”的文件时运行报错:java.net.ConnectException: 拒绝连接;

一、问题描述 搭建完Hadoop集群后&#xff0c;在Hadoop集群环境下运行HDFS实践编程使用Eclipse开发调试HDFS Java程序&#xff08;文末有源码&#xff09;&#xff1a; 假设在目录“hdfs://localhost:9000/user/hadoop”下面有几个文件&#xff0c;分别是file1.txt、file2.tx…

python+playwright 学习-1.环境准备与快速开始

前言 说到 web 自动化&#xff0c;大家最熟悉的就是 selenium 了&#xff0c;selenium 之后又出现了三个强势的框架Puppeteer、CyPress、TestCafe&#xff0c; 但这3个都需要掌握 JavaScript 语言&#xff0c;所以只是少部分人在用。 2020年微软开源一个 UI 自动化测试工具 P…

【前端设计】文字聚光灯

欢迎来到前端设计专栏&#xff0c;本专栏收藏了一些好看且实用的前端作品&#xff0c;使用简单的html、css语法打造创意有趣的作品&#xff0c;为网站加入更多高级创意的元素。 案例 文字聚光灯效果可以用于网站标题 html <!DOCTYPE html> <html lang"en&quo…

书生·浦语第二次作业

我最近在参加书生浦语大模型实战营&#xff0c;这是第二次作业打卡&#xff01; 如果你也想两周玩转大模型微调&#xff0c;部署与测评全链路。报名链接&#xff1a;invite 书生浦语大模型实战营报名 邀请码可以填026014 1. 基础作业&#xff08;一&#xff09;&#xff1a;…

什么是检索增强生成 (RAG)

什么是 RAG RAG&#xff0c;即检索增强生成&#xff0c;是一种将预训练的大型语言模型的功能与外部数据源相结合的技术。这种方法将 GPT-3 或 GPT-4 等 LLM 的生成能力与专用数据搜索机制的精确性相结合&#xff0c;从而形成一个可以提供细微响应的系统。 本文更详细地探讨了…

QTDAY1

头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QIcon> #include <QLabel> #include <QMovie> #include <QLineEdit> #include <QPushButton> class Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *p…

探寻智能酒精壁炉在人类文化传承和精神需求中的重要意义

真火壁炉在人类文明中扮演着至关重要的角色&#xff0c;它不仅是温暖与照明的来源&#xff0c;更承载着人类的情感、记忆和文化传承。从古至今&#xff0c;真火壁炉一直都是家庭和社区聚集的焦点&#xff0c;象征着温暖、交流与家庭团聚。并且随着科技的进步&#xff0c;能使用…

SkyWalking介绍和Docker环境下部署

一、Skywalking概述 1、Skywalking介绍 Skywalking是分布式系统的应用程序性能监视工具&#xff0c;专为微服务&#xff0c;云原生架构和基于容器&#xff08;Docker&#xff0c;K8S,Mesos&#xff09;架构而设计&#xff0c;它是一款优秀的APM&#xff08;Application Perfo…

Halcon灰度的平均值和偏差intensity

Halcon灰度的平均值和偏差 intensity 算子用于计算单张图像上多个区域的灰度值的平均值和偏差。该算子的原型如下&#xff1a; intensity (Regions, Image ::: Mean, Deviation )其各参数的含义如下。 参数1&#xff1a;Regions&#xff08;输入参数&#xff09;&#xff0c;…

harmonyOS 时间选择组件(TimePicker)

本文 我们来说 TimePicker 时间组件 首先 我们搭一个最基本的组件骨架 Entry Component struct Index {build() {Row() {Column() {}.width(100%)}.height(100%)} }然后 在 Column 组件内 放一个 TimePicker进去 这里 我们就可以看到 一个时间的选择器了 DatePicker 捕获当前…

孪生神经网络MATLAB实战[含源码]

​一、算法原理 孪生神经网络&#xff08; Siamese neural network&#xff09;是一种深度学习网络&#xff0c;它使用两个或多个具有相同架构、共享相同参数和权重的相同子网。孪生网络通常用于寻找两个可比较事物之间的关系的任务。孪生网络的一些常见应用包括面部识别、签名…

node.js+mysql旅游景点分享网站-计算机毕业设计源码03796

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。旅游景点分享网站设计&#xff0c;主要的模块包括查看后台首页、轮播图&#xff08;轮播图管理&#xff09;、网站公告管理&#xff08;网站公告…

AQS 抽象队列同步器

AQS AQS &#xff08;抽象队列同步器&#xff09;&#xff1a; AbstractQueuedSynchronizer 是什么 来自jdk1.5&#xff0c;是用来实现锁或者其他同步器组件的公共基础部分的抽象实现&#xff0c;是重量级基础框架以及JUC的基石&#xff0c;主要用于解决锁分配给谁的问题整体…

Linux第17步_安装SSH服务

secure shell protocol简称SSH。 目的&#xff1a;在进行数据传输之前&#xff0c;SSH先对联级数据包通过加密技术进行加密处理&#xff0c;然后再进行数据传输&#xff0c;确保数据传输安全。 1、在安装前&#xff0c;要检查虚拟机可以上网&#xff0c;否则可能会导致安装失…

电商带货品牌直播间SOP运营执行步骤

【干货资料持续更新&#xff0c;以防走丢】 电商带货品牌直播间SOP运营执行步骤 部分资料预览 资料部分是网络整理&#xff0c;仅供学习参考。 直播运营模板合集&#xff08;完整资料包含以下内容&#xff09; 目录 直播业务商业框架.png直播工作流程SOP梳理.xlsx 2023年抖…

HubSpot的内容管理系统(CMS)好用吗?

HubSpot的内容管理系统&#xff08;CMS&#xff09;通常被认为是功能强大且用户友好的工具&#xff0c;尤其适用于数字营销和在线业务。以下是一些HubSpot CMS的优势和功能&#xff1a; 用户友好的编辑界面&#xff1a; HubSpot CMS提供直观的编辑界面&#xff0c;具有拖放式编…

数字藏品如何赋能线下实体?以 BOOMSHAKE 潮流夜店为例

此篇为报告内容精华版&#xff0c;更多详细精彩内容请点击 完整版 在数字化浪潮的推动下&#xff0c;品牌和企业正在迎来一场前所未有的变革。传统市场营销策略逐渐让位于新兴技术&#xff0c;特别是非同质化代币&#xff08;NFT&#xff09;的应用。这些技术不仅改变了品牌资…

scala 安装和创建项目

Scala&#xff0c;一种可随您扩展的编程语言&#xff1a;从小型脚本到大型多平台应用程序。Scala不是Java的扩展&#xff0c;但它完全可以与Java互操作。在编译时&#xff0c;Scala文件将转换为Java字节码并在JVM&#xff08;Java虚拟机&#xff09;上运行。Scala被设计成面向对…

【JAVA】Iterator 怎么使用?有什么特点

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; JAVA ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 Iterator 接口的主要方法&#xff1a; 例子 特点&#xff1a; 结语 我的其他博客 前言 在编程的世界里&#xff0c;迭代…