imgaug库指南(九):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊
imgaug库指南(五):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 中值模糊/滤波,并介绍了如何利用【中值滤波】过滤椒盐噪声
imgaug库指南(六):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 双边模糊/滤波
imgaug库指南(七):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 运动模糊
imgaug库指南(八):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值迁移模糊

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 加性噪声(Add方法)


加性噪声(Add)

功能介绍

iaa.Addimgaug库中的一个方法,用于对图像进行加法运算。加法运算可以用于增加图像的亮度,也可以用于为图像添加加性噪声。

语法

import imgaug.augmenters as iaa
iaa.Add(value=80, per_channel=False)
  • value:
    • value为整数,则为每幅图像的像素值加上value
    • value为元组(a, b),则为每幅图像的像素值加上从区间[a, b]中随机采样的整数;
    • value为列表,则为每幅图像的像素值加上从列表中随机采样的整数;
  • per_channel:
    • per_channelTrue,且value为元组(a, b)或列表,则为每幅图像的每个通道的像素值加上随机采样的整数(三通道则三个随机整数);
    • per_channelFalse,且value为元组(a, b)或列表,则为每幅图像的每个通道的像素值加上随机采样的相同整数(三个通道都是同一个随机整数);
    • per_channel为区间[0,1]的浮点数,假设per_channel=0.6,那么对于60%的图像,per_channelTrue;对于剩余的40%的图像,per_channelFalse

示例代码

  1. 使用不同的value
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建亮度增强器
aug1 = iaa.Add(value=-80, per_channel=False)
aug2 = iaa.Add(value=80, per_channel=False)
aug3 = iaa.Add(value=160, per_channel=False)# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化

可以看到,三幅数据增强后的图像,其亮度相对于原图而言,都整体变亮/暗了。

  1. 使用元组类型的value,且per_channelTrue
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建增强器
aug1 = iaa.Add(value=(-80, 80), per_channel=True)
aug2 = iaa.Add(value=(-80, 80), per_channel=True)
aug3 = iaa.Add(value=(-80, 80), per_channel=True)# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化

可以从图2看出,当使用元组类型的value,且per_channelTrue时 ⇒ 增强器为RGB图像的三个通道分别添加了三个随机整数 ⇒ 数据增强后,新图像的颜色整体上发生了很大的变化。

注意事项

  1. 值的选择value参数决定了添加到图像的亮度值。如果选择的值过大,可能会导致图像出现严重失真。因此,需要根据图像的内容和预期效果来选择合适的值。
  2. 通道处理per_channel参数决定了是否对每个颜色通道应用相同的value。如果设置为True,则每个通道都增加相同的值;如果设置为False(默认),则所有通道都增加相同的值。需要根据具体情况选择合适的设置。
  3. 计算效率Add方法的时间复杂度为O(1),即其执行时间不依赖于输入图像的大小。因此,它在处理大型图像时相对较快。
  4. 与其他增强器的结合使用:虽然示例中只使用了Add方法,但实际上可以在增强器序列中使用多个其他方法与Add方法结合使用,以创建更复杂的图像效果。
  5. 结果的可重复性:由于加法运算具有确定性,每次使用相同的输入和参数调用Add方法时,将获得相同的结果。

总结

iaa.Addimgaug库中一个简单而实用的方法,用于增加图像的亮度。通过调整value参数,可以在不同程度上增加图像的亮度。与其他图像增强方法结合使用,可以创建出更多样化的图像效果。使用时需要注意选择合适的值以避免过度增亮的情况。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/605056.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8S Prometheus-rocketmq-exporter配置

下载rocketmq-exporter 通过Docker仓库下载 docker pull sawyerlan/rocketmq-exporter:latest 然后打标签,推送到自己的仓库 也可通过代码自己build镜像 git clone GitHub - apache/rocketmq-exporter: Apache RocketMQ Prometheus Exporter 然后打标签&#x…

爬虫实战 - 微博评论数据可视化

简介: 我们都知道在数据比较少的情况下,我们是可以很轻易的获取到数据中的信息。但是当数据比较庞大的时候呢,我们就很难看出来了。尤其是面对现如今数以万计的数据,就更了。 不过好在我们可以通过计算机来帮我们进行分析&#…

2.4 DEVICE GLOBAL MEMORY AND DATA TRANSFER

在当前的CUDA系统中,设备通常是带有自己的动态随机存取存储器(DRAM)的硬件卡。例如,NVIDIA GTX1080具有高达8 GB的DRAM,称为全局内存。我们将互换使用全局内存和设备内存这两个术语。为了在设备上执行内核,…

西电期末1032.模式匹配

一.题目 二.分析与思路 遍历判断 三.代码实现 #include<bits/stdc.h>//万能头 int main() {int n;scanf("%d",&n);int num[n];for(int i0;i<n;i){scanf("%d",&num[i]);}int ans0;//个数for(int i0;i<n-2;i){if(num[i]3&&nu…

【Docker】数据卷容器

多个容器进行数据交换 这里引入一个数据卷容器的概念 以下介绍容器A与容器B进行数据交换的原理 假如容器A要与容器 B 进行数据交换&#xff0c; 首先创建一个容器C&#xff0c;将他挂载到数据卷&#xff0c;然后再将容器A与容器B挂载到容器C&#xff0c;这样做相当于容器A与…

【EAI 006】ChatGPT for Robotics:将 ChatGPT 应用于机器人任务的提示词工程研究

论文标题&#xff1a;ChatGPT for Robotics: Design Principles and Model Abilities 论文作者&#xff1a;Sai Vemprala, Rogerio Bonatti, Arthur Bucker, Ashish Kapoor 作者单位&#xff1a;Scaled Foundations, Microsoft Autonomous Systems and Robotics Research 论文原…

YOLOv5改进 | 注意力篇 | ACmix注意力与卷积混合的模型(轻量化注意力机制)

一、本文介绍 本文给大家带来的改进机制是ACmix自注意力机制的改进版本,它的核心思想是,传统卷积操作和自注意力模块的大部分计算都可以通过1x1的卷积来实现。ACmix首先使用1x1卷积对输入特征图进行投影,生成一组中间特征,然后根据不同的范式,即自注意力和卷积方式,分别…

使用 MONAI 加载和保存各种格式的医学图像

本教程属于实战&#xff0c;手把手教你加载各种医学图像数据&#xff08;nii.gz, .dcm, .png等&#xff09;。并学会查看医学图像数据的元数据&#xff08;shape, affine, orientation&#xff09;。学会使用monai全方位了解你的数据&#xff0c;并把它用于之后的深度学习训练。…

Leetcod面试经典150题刷题记录 —— 链表篇

Leetcod面试经典150题刷题记录-系列Leetcod面试经典150题刷题记录——数组 / 字符串篇Leetcod面试经典150题刷题记录 —— 双指针篇Leetcod面试经典150题刷题记录 —— 矩阵篇Leetcod面试经典150题刷题记录 —— 滑动窗口篇Leetcod面试经典150题刷题记录 —— 哈希表篇Leetcod面…

pytorch安装

pytoch安装 1. 准备工作1.1 需要提前安装的软件 2. 安装pyTorch我遇到的问题 3. 显卡测试4. CPU与GPU切换方法4.1 创建张量4.2 第一种切换方法4.3 第二种切换方法 1. 准备工作 1.1 需要提前安装的软件 Anaconda 史上最全最详细的Anaconda安装教程CUDA CUDA安装教程&#xff0…

让充电器秒供多个快充口,乐得瑞推出1拖2功率分配快充线方案

随着PD3.1协议的市场应用越来越多&#xff0c;一些充电器的Type-C接口的输出功率达到百瓦及以上&#xff0c;如何充分利用好这类充电器设备&#xff0c;乐得瑞电子推出1拖2快充线缆解决方案&#xff0c;支持智能功率分配策略支持私有快充协议。 如上图是乐得瑞1拖2功率分配快充…

WWDG---窗口看门狗

一.简介 窗口看门狗跟独立看门狗一样&#xff0c;也是一个递减计数器不断的往下递减计数&#xff0c;必须在一个窗口的上限值&#xff08;用户定义&#xff09;和下限值&#xff08;0X40&#xff0c;固定不能变&#xff09;之间喂狗不会复位&#xff0c;在上限值之前和下限值之…

Flink自定义Source模拟数据流

maven依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.…

OpenCV | 光流估计

光流估计 光流是空间运动物体在观测成像平面上的像素运动的“瞬时速度”&#xff0c;根据各个像素点的速度的速度矢量特征&#xff0c;可以对图像进行动态分析&#xff0c;例如目标跟踪 高度恒定&#xff1a;同一点随着时间的变化&#xff0c;其亮度不会发生改变。小运动&…

ProtoBuf一些踩坑记录

一、Protobuf学习基础 学习的资料很多也很全&#xff0c;这里添加几个链接进行Protobuf的基础学习的链接&#xff0c;链接中的案例使用C编辑&#xff1a; 链接&#xff1a;Protobuf介绍及简单使用(上&#xff09;_google_protobuf_version-CSDN博客 Protobuf介绍及简单使用(下&…

MFC综合实验二学习记录

文章目录 如何确定消息映射宏中命令对应的菜单项资源虚函数和纯虚函数的区别&#xff1f;MFC中什么是UPDATE_COMMAND_UI 消息如何查看控件对应的成员变量模态对话框的理解HGDIOBJ" 类型的值不能用于初始化 "CBrush *" 类型的实体错误MFC编程中CDC类型和HDC类型有…

TOP 9 安卓手机系统和应用程序修复工具,可修复各种Android 系统问题

您的新 Android 手机可能因其令人兴奋的性能而印象深刻。然而&#xff0c;随着时间的推移&#xff0c;您可能会发现系统有些地方与以前不太一样。您可能会遇到屏幕无响应、 Android应用程序崩溃、连接问题、电池耗尽等现象。 好吧&#xff0c;在这些情况下您不必感到不安&…

centos通过yum安装redis

1. 安装yum添加epel源(此步根据环境&#xff0c;如果有源则可跳过&#xff0c;在阿里去可跳过&#xff09; yum install epel-release 2 使用yum安装Redis yum install redis 出现如下图所示的内容&#xff0c;默认的安装路径是在 /usr/bin目录下&#xff1a; 文件安装路径…

uniapp 微信小程序跳转至其他小程序

一、背景&#xff1a; 需要在目前的小程序中跳转到另一个小程序&#xff0c;跳转的目标小程序需要已经发布上线了 二、具体实现 使用uni.navigateToMiniProgram打开另一个小程序 官网指引&#x1f449;&#xff1a;uni.navigateToMiniProgram(OBJECT) | uni-app官网 <t…

iview 选择框远程搜索 指定筛选的参数

问题&#xff1a;开启了filterable之后&#xff0c;选择框是允许键盘输入的&#xff0c;但是会对选择列表进行过滤&#xff0c;如果不想使用再次过滤&#xff0c;可以试下下面这个方法。 场景&#xff1a;输入加密前的关键字筛选&#xff0c;选择框显示加密后的数据 说明一&a…