Python 全栈体系【四阶】(十一)

第四章 机器学习

机器学习:

  • 传统的机器学习:以算法为核心
  • 深度学习:以数据和计算为核心

感知机 perceptron(人工神经元)

  • 可以做简单的分类任务
  • 掀起了第一波 AI 浪潮

感知机不能解决线性不可分问题,浪潮跌入谷底

线性不可分的问题在理论界上被解决了:MLP

  • 掀起了第二波 AI 浪潮

由于当时是 80 年代,算力很差,第二波浪潮跌入谷底。

在同一时期,SVM 的出现,通过升维变换的方式解决了线性不可分问题。

1998 年,YanleCun 提出来 Lenet5,CNN

2006 年,杰弗里辛顿 DBN 掀起了第三波 AI 浪潮

十四、支持向量机

1. 基本概念

1.1 什么是支持向量机

支持向量机(Support Vector Machines)是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化(即数据集的边缘点到分界线的距离 d 最大,如下图),最终转化为一个凸二次规划问题来求解。通常 SVM 用于二元分类问题,对于多元分类可将其分解为多个二元分类问题,再进行分类。所谓“支持向量”,就是下图中虚线穿过的边缘点。支持向量机就对应着能将数据正确划分并且间隔最大的直线(下图中红色直线)。

在这里插入图片描述

1.2 最优分类边界

什么才是最优分类边界?什么条件下的分类边界为最优边界呢?

在这里插入图片描述

如图中的 A,B 两个样本点,B 点被预测为正类的确信度要大于 A 点,所以 SVM 的目标是寻找一个超平面,使得离超平面较近的异类点之间能有更大的间隔,即不必考虑所有样本点,只需让求得的超平面使得离它近的点间隔最大。超平面可以用如下线性方程来描述:

w T x + b = 0 w^T x + b = 0 wTx+b=0

其中, x = ( x 1 ; x 2 ; . . . ; x n ) x=(x_1;x_2;...;x_n) x=(x1;x2;...;xn) w = ( w 1 ; w 2 ; . . . ; w n ) w=(w_1;w_2;...;w_n) w=(w1;w2;...;wn) b b b为偏置项。可以从数学上证明,支持向量到超平面距离为:

γ = 1 ∣ ∣ w ∣ ∣ \gamma = \frac{1}{||w||} γ=∣∣w∣∣1

为了使距离最大,只需最小化 ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣即可。

1.3 SVM 最优边界要求

SVM 寻找最优边界时,需满足以下几个要求:

(1)正确性:对大部分样本都可以正确划分类别;

(2)安全性:支持向量,即离分类边界最近的样本之间的距离最远;

(3)公平性:支持向量与分类边界的距离相等;

(4)简单性:采用线性方程(直线、平面)表示分类边界,也称分割超平面。如果在原始维度中无法做线性划分,那么就通过升维变换,在更高维度空间寻求线性分割超平面。从低纬度空间到高纬度空间的变换通过核函数进行。

1.4 线性可分与线性不可分
1.4.1 线性可分

如果一组样本能使用一个线性函数将样本正确分类,称这些数据样本是线性可分的。那么什么是线性函数呢?在二维空间中就是一条直线,在三维空间中就是一个平面,以此类推,如果不考虑空间维数,这样的线性函数统称为超平面。

1.4.2 线性不可分

如果一组样本,无法找到一个线性函数将样本正确分类,则称这些样本线性不可分。以下是一个一维线性不可分的示例:

在这里插入图片描述

一维线性不可分

以下是一个二维不可分的示例:

在这里插入图片描述

二维线性不可分

对于该类线性不可分问题,可以通过升维,将低纬度特征空间映射为高纬度特征空间,实现线性可分,如下图所示:

在这里插入图片描述

一维空间升至二维空间实现线性可分

在这里插入图片描述

二维空间升至三维空间实现线性可分

那么如何实现升维?这就需要用到核函数。

2. 核函数

通过名为核函数的特征变换,增加新的特征,使得低维度线性不可分问题变为高维度线性可分问题。如果低维空间存在 K(x,y),x,y∈Χ,使得 K(x,y)=ϕ(x)·ϕ(y),则称 K(x,y)为核函数,其中 ϕ(x)·ϕ(y)为 x,y 映射到特征空间上的内积,ϕ(x)为 X→H 的映射函数。以下是几种常用的核函数。

2.1 线性核函数

线性核函数(Linear)表示不通过核函数进行升维,仅在原始空间寻求线性分类边界,主要用于线性可分问题。

示例代码:

# 支持向量机示例
import numpy as np
import sklearn.model_selection as ms
import sklearn.svm as svm
import sklearn.metrics as sm
import matplotlib.pyplot as mpx, y = [], []
with open("../data/multiple2.txt", "r") as f:for line in f.readlines():data = [float(substr) for substr in line.split(",")]x.append(data[:-1])  # 输入y.append(data[-1])  # 输出# 列表转数组
x = np.array(x)
y = np.array(y, dtype=int)# 线性核函数支持向量机分类器
model = svm.SVC(kernel="linear")  # 线性核函数
# model = svm.SVC(kernel="poly", degree=3)  # 多项式核函数
# print("gamma:", model.gamma)
# 径向基核函数支持向量机分类器
# model = svm.SVC(kernel="rbf",
#                 gamma=0.01,  # 概率密度标准差
#                 C=200)  # 概率强度
model.fit(x, y)# 计算图形边界
l, r, h = x[:, 0].min() - 1, x[:, 0].max() + 1, 0.005
b, t, v = x[:, 1].min() - 1, x[:, 1].max() + 1, 0.005# 生成网格矩阵
grid_x = np.meshgrid(np.arange(l, r, h), np.arange(b, t, v))
flat_x = np.c_[grid_x[0].ravel(), grid_x[1].ravel()]  # 合并
flat_y = model.predict(flat_x)  # 根据网格矩阵预测分类
grid_y = flat_y.reshape(grid_x[0].shape)  # 还原形状mp.figure("SVM Classifier", facecolor="lightgray")
mp.title("SVM Classifier", fontsize=14)mp.xlabel("x", fontsize=14)
mp.ylabel("y", fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x[0], grid_x[1], grid_y, cmap="gray")C0, C1 = (y == 0), (y == 1)
mp.scatter(x[C0][:, 0], x[C0][:, 1], c="orangered", s=80)
mp.scatter(x[C1][:, 0], x[C1][:, 1], c="limegreen", s=80)
mp.show()

绘制图形:

在这里插入图片描述

2.2 多项式核函数

多项式核函数(Polynomial Kernel)用增加高次项特征的方法做升维变换,当多项式阶数高时复杂度会很高,其表达式为:

K ( x , y ) = ( α x T ⋅ y + c ) d K(x,y)=(αx^T·y+c)d K(xy)=(αxTy+c)d

y = x 1 + x 2 y = x 1 2 + 2 x 1 x 2 + x 2 2 y = x 1 3 + 3 x 1 2 x 2 + 3 x 1 x 2 2 + x 2 3 y = x_1 + x_2\\ y = x_1^2 + 2x_1x_2+x_2^2\\ y=x_1^3 + 3x_1^2x_2 + 3x_1x_2^2 + x_2^3 y=x1+x2y=x12+2x1x2+x22y=x13+3x12x2+3x1x22+x23

其中,α 表示调节参数,d 表示最高次项次数,c 为可选常数。

示例代码(将上一示例中创建支持向量机模型改为一下代码即可):

model = svm.SVC(kernel="poly", degree=3)  # 多项式核函数

生成图像:

在这里插入图片描述

2.3 径向基核函数

径向基核函数(Radial Basis Function Kernel)具有很强的灵活性,应用很广泛。与多项式核函数相比,它的参数少,因此大多数情况下,都有比较好的性能。在不确定用哪种核函数时,可优先验证高斯核函数。由于类似于高斯函数,所以也称其为高斯核函数。表达式如下:

示例代码(将上一示例中分类器模型改为如下代码即可):

# 径向基核函数支持向量机分类器
model = svm.SVC(kernel="rbf",gamma=0.01, # 概率密度标准差C=600)  # 概率强度,该值越大对错误分类的容忍度越小,分类精度越高,但泛化能力越差;该值越小,对错误分类容忍度越大,但泛化能力强

生成图像:

在这里插入图片描述

3. 总结

(1)支持向量机是二分类模型

(2)支持向量机通过寻找最优线性模型作为分类边界

(3)边界要求:正确性、公平性、安全性、简单性

(4)可以通过核函数将线性不可分转换为线性可分问题,核函数包括:线性核函数、多项式核函数、径向基核函数

(5)支持向量机适合少量样本的分类

4. 网格搜索

获取一个最优超参数的方式可以绘制验证曲线,但是验证曲线只能每次获取一个最优超参数。如果多个超参数有很多排列组合的话,就可以使用网格搜索寻求最优超参数组合。

针对超参数组合列表中的每一个超参数组合,实例化给定的模型,做 cv 次交叉验证,将其中平均 f1 得分最高的超参数组合作为最佳选择,实例化模型对象。

网格搜索相关 API:

import sklearn.model_selection as ms
params =
[{'kernel':['linear'], 'C':[1, 10, 100, 1000]},{'kernel':['poly'], 'C':[1], 'degree':[2, 3]},{'kernel':['rbf'], 'C':[1,10,100], 'gamma':[1, 0.1, 0.01]}]model = ms.GridSearchCV(模型, params, cv=交叉验证次数)
model.fit(输入集,输出集)
# 获取网格搜索每个参数组合
model.cv_results_['params']
# 获取网格搜索每个参数组合所对应的平均测试分值
model.cv_results_['mean_test_score']
# 获取最好的参数
model.best_params_
model.best_score_
model.best_estimator_

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/604341.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git提交代码发生冲突的场景与解决方案

问题 当我们在使用 Git 向远程仓库提交代码时,可能会遇到如下所述的错误提示: To https://github.com/xxxxx/gitmerge.git! [rejected] master -> master (fetch first) error: failed to push some refs to https://github.com/xxxxx/gitme…

Vue2:脚手架Vue-CLI的使用

一、环境准备 vue脚手架(vue-CLI)的使用是基于nodejs环境下的。 你可以简单理解为,Java项目需要再jvm虚拟机上才能编译运行 nodejs的作用就是将vue文件编译成html、css、js代码文件。 如何安装nodejs 参考:https://blog.csdn.net…

ARMv8-AArch64 的异常处理模型详解之异常等级、执行状态以及安全状态

ARMv8-AArch64 的异常处理模型详解 一,特权和异常等级1.1 异常等级 Exception levels 二,特权的类型2.1 内存特权2.2 访问寄存器的特权 三,执行状态和安全状态3.1 执行状态 Execution states3.2 执行状态切换 3.3 安全状态 Security states3.…

第16课 播放rtsp流

在现实生活中有许多rtsp摄像头,这些摄像头如果能充分利用起来可以生成很多有趣、有用的应用:比如户外互动大屏等。在第4课,我们实现了一个播放器,当时来用它播放rtmp流和mp4时它好象工作的很好。这节课我们就用它来播放rtsp流试试…

二进制介绍

十进制转相应进制 (十进制)231 转 八进制 除八取余法 从下而上取余 231/828 ....7 28/83.......4 3/80........3 (十进制)231(八进制)0o347 (十进制)231 转 16进制 除十六取余法 从下而上取余 231/1614......7 14/160..........14 (十进制) 231(十六进制)0xe7 (十进制)231.3 转…

C++动态内存分配(动态内存分配函数)栈区

内存拷贝函数&#xff1a; void *memcpy(void *dest,const void *src,size_tn);#include<string.h>功能&#xff1a;从源src所指的内存地址的起始位置开始拷贝n个字节到目标dest内存地址的起始位置 分配内存使用new 例如&#xff1a;salarynew int[num]; 最后需要释放…

Linux文件操作命令(touch、cat、more、cp、mv、rm)

之前我们学习了对目录&#xff08;即文件夹的操作&#xff0c;那么现在我们来一起看一下怎么操作文件吧&#xff09; 1.touch命令 功能&#xff1a;创建文件 语法&#xff1a;touch 参数 参数&#xff1a;被创建的文件路径 注意&#xff1a;touch命令无选项&#xff0c;参…

【Docker-Dev】Mac M2 搭建docker的redis环境

Redis的dev环境docker搭建 1、前言2、官方文档重点信息提取2.1、创建redis实例2.2、使用自己的redis.conf文件。 3、单机版redis搭建4、redis集群版4.1、一些验证4.2、一些问题 结语 1、前言 本文主要针对M2下&#xff0c;相应进行开发环境搭建&#xff0c;然后做一个文档记录…

面试算法88:爬楼梯的最少成本

题目 一个数组cost的所有数字都是正数&#xff0c;它的第i个数字表示在一个楼梯的第i级台阶往上爬的成本&#xff0c;在支付了成本cost[i]之后可以从第i级台阶往上爬1级或2级。假设台阶至少有2级&#xff0c;既可以从第0级台阶出发&#xff0c;也可以从第1级台阶出发&#xff…

window使用cpolar实现内网穿透

文章目录 cpolar下载和安装启动和配置cpolar卸载 cpolar下载和安装 进入spolar官网&#xff0c;完成注册&#xff0c;下载相应的cploar版本解压和运行安装文件 配置安装路径&#xff0c;然后选择next&#xff0c;完成即可 启动和配置 点击首页的快捷图标打开网页&#xf…

Defi安全-Monox攻击事件Foundry复现

其它相关内容可见个人主页 Mono攻击事件的介绍见&#xff1a;Defi安全–Monox攻击事件分析–phalconetherscan 1. 前情提要和思路介绍 Monox使用单边池模型&#xff0c;创建的是代币-vCash交易对&#xff0c;添加流动性时&#xff0c;只需添加代币&#xff0c;即可进行任意代…

Jmeter相关概念

Jmeter相关概念 jmeter性能指标 Aggregate Report 是 JMeter 常用的一个 Listener&#xff0c;中文被翻译为“聚合报告”。今天再次有同行问到这个报告中的各项数据表示什么意思&#xff0c;顺便在这里公布一下&#xff0c;以备大家查阅。 如果大家都是做Web应用的性能测试&a…

C语言中关于函数调用的理解

理论 关于函数调用的方式有两类&#xff1a;传值调用和传址调用 传值调用&#xff1a;函数的形参和实参分别占有不同的内存块&#xff0c;对形参的修改不会影响实参。 传址调用&#xff1a;把函数外部创建变量的内存地址传递给函数参数的一种调用方式。可以让函数和函数外面…

每周一算法:倍增法求区间最大最小值(RMQ)

RMQ RMQ 是英文 Range Maximum/Minimum Query 的缩写&#xff0c;表示区间最大&#xff08;最小&#xff09;值。使用倍增思想解决 RMQ 问题的方法是 ST 表&#xff08;Sparse Table&#xff0c; 稀疏表 &#xff09;。ST 表是用于解决 可重复贡献问题 的数据结构。 可重复贡献…

IPv6和IPv4在技术层面的区别

随着互联网的不断发展&#xff0c;IPv4地址资源已经逐渐枯竭&#xff0c;而IPv6地址的使用逐渐成为趋势。IPv6和IPv4作为互联网协议的两个版本&#xff0c;在技术层面存在许多区别。本文将从地址空间、地址表示方法、路由协议、安全性、移动性以及网络性能等方面对IPv6和IPv4进…

Dockerfile的ENV

文章目录 环境总结测试测试1测试2测试3测试4测试5测试6 参考 环境 RHEL 9.3Docker Community 24.0.7 总结 如果懒得看测试的详细信息&#xff0c;可以直接看结果&#xff1a; 一条 ENV 指令可以定义多个环境变量。Dockerfile里可以包含多条 ENV 指令。环境变量的值不需要用…

【MIdjourney】关于图像中人物视角的关键词

本篇仅是我个人在使用过程中的一些经验之谈&#xff0c;不代表一定是对的&#xff0c;如有任何问题欢迎在评论区指正&#xff0c;如有补充也欢迎在评论区留言。 1.全景镜头(panorama) 全景镜头是一种广角镜头&#xff0c;可以捕捉到比普通镜头更广阔的视野范围。全景镜头&…

目标检测-One Stage-YOLOv4

文章目录 前言一、目标检测网络组成二、BoF&#xff08;Bag of Freebies&#xff09;1. 数据增强2.语义分布偏差问题3.损失函数IoUGIoUDIoUCIoU 三、BoS(Bag of Specials)增强感受野注意力机制特征融合激活函数后处理 四、YOLO v4的网络结构和创新点1.缓解过拟合&#xff08;Bo…

Python武器库开发-武器库篇之子域名扫描器开发(四十一)

Python武器库开发-武器库篇之子域名扫描器开发(四十一) 在我们做红队攻防或者渗透测试的过程中&#xff0c;信息收集往往都是第一步的&#xff0c;有人说&#xff1a;渗透的本质就是信息收集&#xff0c;前期好的信息收集很大程度上决定了渗透的质量和攻击面&#xff0c;本文将…

竞赛练一练 第23期:NOC大赛每日一练,python题目刷题第8天,包含答案解析

题目来自:NOC 大赛创客智慧编程赛项Python 复赛模拟题(二) NOC大赛创客智慧编程赛项Python 复赛模拟题(二) 第一题: 编写一个成绩评价系统,当输入语文、数学和英语三门课程成绩时,输出三门课程总成绩及其等级。 (1)程序提示用户输入三个数字,数字分别表示语文、数学、…