【十七】【动态规划】DP41 【模板】01背包、416. 分割等和子集、494. 目标和,三道题目深度解析

动态规划

动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重复计算。

动态规划与数学归纳法思想上十分相似。

数学归纳法:

  1. 基础步骤(base case):首先证明命题在最小的基础情况下成立。通常这是一个较简单的情况,可以直接验证命题是否成立。

  2. 归纳步骤(inductive step):假设命题在某个情况下成立,然后证明在下一个情况下也成立。这个证明可以通过推理推断出结论或使用一些已知的规律来得到。

通过反复迭代归纳步骤,我们可以推导出命题在所有情况下成立的结论。

动态规划:

  1. 状态表示:

  2. 状态转移方程:

  3. 初始化:

  4. 填表顺序:

  5. 返回值:

数学归纳法的基础步骤相当于动态规划中初始化步骤。

数学归纳法的归纳步骤相当于动态规划中推导状态转移方程。

动态规划的思想和数学归纳法思想类似。

在动态规划中,首先得到状态在最小的基础情况下的值,然后通过状态转移方程,得到下一个状态的值,反复迭代,最终得到我们期望的状态下的值。

接下来我们通过三道例题,深入理解动态规划思想,以及实现动态规划的具体步骤。

DP41 【模板】01背包

题目解析

第一问

状态表示

状态表示通常由经验+题目要求得的。

我们最容易想到的状态表示是,定义dp[i]表示从前i个物品中挑选,背包所能达到的最大价值。

动态规划最重要的是希望能够推导出一个递推式,使得我们从一个很小的,很容易得到的基础解,带入递推式,反复推导,最后得到我们希望得到的答案。所以我们很容易想到,根据从前i个物品中挑选,挑选物品的数量,构成我们的每一项,希望能够推导出递推式。

如果我们要推导dp[i],我们找不到前面状态和i位置状态的关系,我们知道的信息是前面位置状态的值,状态值表示所能达到的最大价值,但是我不知道达到最大价值时,背包的容量,所以我就没办法考虑是否选择第i个物品放入背包,或者不放入背包,如果我们此时还知道对应的背包容量,如果还有位置,我们就可以选择把第i个物品放进去,这样似乎可以推导出状态转移方程。所以此时我们还需要表示一个状态,就是此时背包内物品占用的空间是多大。

因此我们可以定义,f[i]表示从前i个物品中挑选,背包所能达到的最大价值。g[i]表示从从前i个物品中挑选,背包所能达到的最大价值时,背包占用的体积。

尝试推导状态转移方程,

  1. 如果把第i个物品放入背包, 此时g[i-1]+v[i]<=V , 此时从前i个物品挑选,所能达到的最大价值,等价于从前i-1个物品挑选,所能达到的最大价值加上第i个物品的价值,即在f[i]的基础上,把第i个物品放入背包,此时f[i]=f[i-1]+w[i],g[i]=g[i-1]+v[i]。

  2. 如果不把第i个物品放入背包, 此时g[i-1]+v[i]>V, 此时f[i]=f[i-1],g[i]=g[i-1],这样写是对的吗?乍一看好像没什么问题,但这样不对,有可能从前i-1个物品中挑选,达到的价值不是最大,而是第二大,此时的体积再加上第i个位置的物品的体积比背包总体积小,但是两者价值加起来比f[i-1]大,这种情况f[i]!=f[i-1]。也就是我们还需要遍历前面所有状态,看看是不是(g[j]+v[i]<=V)这种情况,如果是,记录一下f[j]的值,找到最大的f[j]值,然后和f[i-1]比较,选大的值。这样状态转移方程的推导就变得十分麻烦,我们希望改变状态表示,使得状态转移方程能够正常推导,并且简便。

改进,

上面遇到的问题是,我们不知道,从前i-1物品挑选,价值和第二大的体积花费,价值和第三大的体积花费......如果知道这些状态,我们就可以直接用。

我们需要的状态是上面的体积花费,因此我们可以以体积为划分,定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

这样我们就使得原先只能存储最大价值的体积g,转变为可以存储不同体积花费的二维dp。

综上所述,状态表示为,定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

状态转移方程

  1. 如果把第i个物品放入背包, dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。此时剩下的体积最多是j-v[i]。

    1. j-v[i]<0, 此时没办法把第i个物品放入背包,此时dp[i][j]=0。

    2. j-v[i]=0, 此时把第i个物品放入背包,背包放不下东西了,此时dp[i][j]=w[i]。

    3. j-v[i]>0, 此时把第i个物品放入背包,背包还能放j-v[i]体积的物品,此时dp[i][j]=dp[i-1][j-v[i]]+w[i]。

  2. 如果不把第i个物品放入背包, 此时背包还能放j体积的物品,从前i-1物品中挑选,dp[i][j]=dp[i-1][j],

当j-v[i]=0时,dp[i-1][0]=0,此时dp[i][j]=dp[i-1][j-v[i]]+w[i]。

将上述情况合并和简化,得到状态转移方程为,

 
    dp[i][j] = dp[i - 1][j];if (j >= v[i])dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);

初始化

通过状态转移方程,我们我们知道在推导(i,j)位置的状态时,需要用到(i-1,j)(i-1,j-v[i])的位置的状态,j-v[i]一定不会越界,可能越界的是i-1,而我们状态表示为定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。所以我们本质上多添加了一列。我们只需要初始第一行即可。

i=0表示不选物品,所以价值都为0,第一行全部初始化为0。

填表顺序

通过状态转移方程,我们我们知道在推导(i,j)位置的状态时,需要用到(i-1,j)(i-1,j-v[i])的位置的状态,j-v[i]一定不会越界。

  1. 固定i改变j, i的变化需要从小到大,j的变化可以从小到大也可以从大到小。

  2. 固定j改变i, j的变化需要从小到大,因为要用到(i-1,j)位置的状态,所以i的变化也需要从小到大。

返回值

状态表示为定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

结合题目意思,需要打印dp[n][V]。

这样我们就解决了第一问。


第二问

状态表示

第二问需要求恰好体积为V时,背包所能达到的最大价值。

在第一问的基础上,我们很容易定义这样一个状态表示,定义dp[i][j]表示从前i个物品中挑选,总体积恰好为j,所有选法中所能达到的最大价值。

状态转移方程

  1. 如果把第i个物品放入背包, dp[i][j]表示从前i个物品中挑选,总体积恰好为j,所有选法中所能达到的最大价值。此时剩下的体积恰好是j-v[i]。

    1. j-v[i]<0, 此时没办法把第i个物品放入背包,此时dp[i][j]=0。

    2. j-v[i]=0, 此时把第i个物品放入背包,背包放不下东西了,此时dp[i][j]=w[i]。

    3. j-v[i]>0, 此时把第i个物品放入背包,背包还需要放j-v[i]体积的物品,此时dp[i][j]=dp[i-1][j-v[i]]+w[i]。我这样写对吗?此时背包必须放j-v[i]体积的物品,如果前j-1物品挑选不能满足体积为j-v[i]的情况,此时dp[i][j]=0。如果写成上面的式子,dp[i][j]=w[i]。因此我们还需要分类讨论。

      1. 如果前j-1物品挑选不能满足体积为j-v[i]的情况, 此时dp[i][j]=0。

      2. 如果前j-1物品挑选能满足体积为j-v[i]的情况, 此时dp[i][j]=d[i-1][j-v[i]]+w[i]。

  2. 如果不把第i个物品放入背包, 此时背包还需要放j体积的物品,从前i-1物品中挑选,dp[i][j]=dp[i-1][j]。

当j-v[i]=0时,dp[i-1][0]=0,此时dp[i][j]=dp[i-1][j-v[i]]+w[i]。

将上述情况进行合并和简化,得到状态转移方程,

 
        dp[i][j] = dp[i - 1][j];if (j >= v[i] && dp[i - 1][j - v[i]] != -1)dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);

用-1表示前j-1物品挑选不能满足体积为j-v[i]的情况。

初始化

通过状态转移方程,我们我们知道在推导(i,j)位置的状态时,需要用到(i-1,j)(i-1,j-v[i])的位置的状态,j-v[i]一定不会越界,可能越界的是i-1,而我们状态表示为定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。所以我们本质上多添加了一列。我们只需要初始第一行即可。

i=0,表示不选择物品,最大价值为0,所以(0,0)为0,其他位置为-1,表示达不到恰好体积为j的情况。

 
    for (int j = 1; j <= V; j++) dp[0][j] = -1;

填表顺序

通过状态转移方程,我们我们知道在推导(i,j)位置的状态时,需要用到(i-1,j)(i-1,j-v[i])的位置的状态,j-v[i]一定不会越界。

  1. 固定i改变j, i的变化需要从小到大,j的变化可以从小到大也可以从大到小。

  2. 固定j改变i, j的变化需要从小到大,因为要用到(i-1,j)位置的状态,所以i的变化也需要从小到大。

返回值

状态表示为定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

结合题目意思,需要打印dp[n][V]。此时需要判断dp[n][V]是否==-1,等于-1表示不存在,无解返回0,如果不为-1,返回dp[n][V]。

代码实现

 
#include <iostream>
#include <string.h>using namespace std;const int N = 1010;int n, V, v[N], w[N];
int dp[N][N];int main() {cin >> n >> V;for (int i = 1; i <= n; i++)cin >> v[i] >> w[i];for (int i = 1; i <= n; i++)for (int j = 0; j <= V; j++) { dp[i][j] = dp[i - 1][j];if (j >= v[i])dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}cout << dp[n][V] << endl;//第二问memset(dp, 0, sizeof dp);for (int j = 1; j <= V; j++) dp[0][j] = -1;for (int i = 1; i <= n; i++)for (int j = 0; j <= V; j++) { dp[i][j] = dp[i - 1][j];if (j >= v[i] && dp[i - 1][j - v[i]] != -1)dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}

416. 分割等和子集 - 力扣(LeetCode)

题目解析

状态表示

01背包问题本质是从一些物品中选物品,本质上是有关组合的问题,而本题目也是在一些数中挑选出一些数,因为我们可以以01背包为模版,定义状态表示。

01背包问题的状态表示为,

定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

定义dp[i][j]表示从前i个物品中挑选,总体积为j,所有选法中,所能达到的最大价值。

因此我们可以定义dp[i][j]表示能否从nums[0,i]区间中挑选元素,使总数字和为j。

状态转移方程

状态转移方程的推导是以最后一个位置的状况进行分类讨论。

  1. 如果挑选i位置的元素,

    1. 如果j-nums[i]<0, 此时表示i位置元素比j还要大,此时dp[i][j]=false;

    2. 如果j-nums[i] =0, 此时dp[i][j]=true;

    3. 如果j-nums[i]>0, 此时dp[i][j]=dp[i-1][j-nums[i]];

  2. 如果不挑选i位置的元素, 此时dp[i][j]=dp[i-1][j];

将上述情况进行合并和简化,得到状态转移方程,

 
        dp[i][j] = dp[i - 1][j];if (j > nums[i])dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i]];else if(j == nums[i]) dp[i][j] = true;

初始化

根据状态转移方程,我们知道,在推导(i,j)位置的状态时,需要用到(i-1,j)(i-1,j-nums[i])位置的状态。

所以我们需要初始化第一行位置的状态,在推导蓝色部分位置状态的时候没有前驱,所以需要初始化这些位置的状态值。使用(i-1,j-nums[i])状态时,j-nums[i]一定不会越界。所以只需要考虑(i-1,j)

状态表示,定义dp[i][j]表示能否从nums[0,i]区间中挑选元素,使总数字和为j。

i==0,表示从只选择挑选或者不挑选第一个元素,能否使数字和为j。如果nums[0]==j,或者j==0,此时dp[i][j]=true。

故初始化为,

 
        for (int j = 0; j < n; j++)if(nums[0] == j || j == 0) dp[0][j] = true;

填表顺序

根据状态转移方程,我们知道,在推导(i,j)位置的状态时,需要用到(i-1,j)(i-1,j-nums[i])位置的状态。使用(i-1,j-nums[i])状态时,j-nums[i]一定不会越界。所以只需要考虑(i-1,j)

  1. 固定i改变j, i的变化,需要从小到大,j的变化可以从小到大也可以从大到小。

  2. 固定j改变i, j的变化可以从小到大也可以从大到小,i的变化需要从小到大。

返回值

状态表示,定义dp[i][j]表示能否从nums[0,i]区间中挑选元素,使总数字和为j。

结合题目意思,我们需要在nums[0,n-1]区间挑选元素,使总数字和为所有元素数字和的一半。

所以我们可以用aim表示所有元素数字和的一半,

因此需要返回dp[n-1][aim];

代码实现

 
class Solution {
public:bool canPartition(vector<int>& nums) {int n = nums.size(), sum = 0;for (auto x : nums)sum += x;if (sum % 2)return false; // 如果不能平分,直接返回 falseint aim = sum / 2;vector<vector<bool>> dp(n, vector<bool>(aim + 1));for (int j = 0; j < n; j++)if(nums[0] == j || j==0) dp[0][j] = true;for (int i = 1; i < n; i++)for (int j = 0; j <= aim; j++) {dp[i][j] = dp[i - 1][j];if (j > nums[i])dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i]];else if (j == nums[i])dp[i][j] = true;}return dp[n - 1][aim];}
};

494. 目标和 - 力扣(LeetCode)

题目解析

状态表示

01背包问题本质是从一些物品中选物品,本质上是有关组合的问题,而本题目也是在一些数中挑选出一些数,因为我们可以以01背包为模版,定义状态表示。

01背包问题的状态表示为,

定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

定义dp[i][j]表示从前i个物品中挑选,总体积为j,所有选法中,所能达到的最大价值。

因此我们可以定义dp[i][j]表示从nums[0,i]区间中挑选元素,使总数字和为j,一共有多少种选法。

状态转移方程

状态转移方程的推导是以最后一个位置的状况进行分类讨论。

dp[i][j]表示从nums[0,i]区间中挑选元素,使总数字和为j,一共有多少种选法。

  1. 如果挑选i位置的元素,

    1. 如果j-nums[i]<0, 此时表示i位置元素比j还要大,此时dp[i][j]=0;

    2. 如果j-nums[i] =0, 此时表示挑选i位置元素后,数字和就为j了,此时还需要考虑数字和为0的挑选种类次数,所以此时dp[i][j]=dp[i-1][j-nums[i-1]];

    3. 如果j-nums[i]>0, dp[i-1][j-nums[i]]表示从nums[0,i-1]区间中挑选元素,使总数字和为j-nums[i],一共有多少种选法。这些选法的每一种选法中,都加上i位置的元素,选法数不变,但是这些选法使得数字和都为j。 此时dp[i][j]=dp[i-1][j-nums[i]];

  2. 如果不挑选i位置的元素, 此时dp[i][j]=dp[i-1][j];

将上述情况进行合并和简化,得到状态转移方程,

 
                dp[i][j] = dp[i - 1][j];if (j >= nums[i])dp[i][j] += dp[i - 1][j - nums[i]];

初始化

根据状态转移方程,我们知道,在推导(i,j)位置的状态时,需要用到(i-1,j)(i-1,j-nums[i])位置的状态,而只有j>nums[i]的时候才会用到(i-1,j-nums[i])位置的状态,所以我们只需要考虑(i-1,j)。

所以我们需要初始化第一行位置的状态,在推导蓝色部分位置状态的时候没有前驱,所以需要初始化这些位置的状态值。

我们可以添加虚拟节点,即多添加一行和一列,使这些虚拟节点成为蓝色位置的前驱,这样就不用初始化蓝色位置的值,而变为初始化虚拟节点即可。

这样做的好处是,虚拟结点的初始化可能比蓝色部分位置状态的初始化要简便许多。

添加虚拟结点后,状态表示和状态转移方程会发生改变,即,

dp[i][j]表示从nums[0,i-1]区间中挑选元素,使总数字和为j,一共有多少种选法。

 
                dp[i][j] = dp[i - 1][j];if (j >= nums[i - 1])dp[i][j] += dp[i - 1][j - nums[i - 1]];

添加虚拟节点后,有两点注意事项,

  1. 初始化虚拟节点,必须保证推导后续位置的状态的正确性。

  2. 下标的映射关系。

初始化虚拟节点:

我们根据状态表示,dp[i][j]表示从nums[0,i-1]区间中挑选元素,使总数字和为j,一共有多少种选法。我们同时可以根据状态表示赋予第一行意义,表示不选元素时的情况。

接下来初始化绿色位置的状态。

此时表示不选择元素,此时(0,0)位置dp[0][0]=1,其他位置为0。

下标映射关系:

  1. 此时,dp[i][j]表示从nums[0,i-1]区间中挑选元素,使总数字和为j,一共有多少种选法。 dp中i对应nums的i-1。

  2. 如果在nums前面添加一个占位符,就可以使得dp中i,j继续映射nums1,nums2中i,j。

我们这里选择第一种解决办法。

得到初始化,

 
        dp[0][0] = 1;  

填表顺序

根据状态转移方程,我们知道,在推导(i,j)位置的状态时,需要用到(i-1,j)(i-1,j-nums[i])位置的状态。使用(i-1,j-nums[i])状态时,j-nums[i]一定不会越界。所以只需要考虑(i-1,j)

  1. 固定i改变j, i的变化,需要从小到大,j的变化可以从小到大也可以从大到小。

  2. 固定j改变i, j的变化可以从小到大也可以从大到小,i的变化需要从小到大。

返回值

dp[i][j]表示从nums[0,i-1]区间中挑选元素,使总数字和为j,一共有多少种选法。

结合题目意思,我们需要在nums[0,n-1]区间挑选元素,使总数字和为所有元素数字和的一半。

所以我们可以用aim表示所有元素数字和的一半,

因此需要返回dp[n][aim];

代码实现

 
class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum = 0;for (auto x : nums)sum += x;int aim = (sum + target) / 2;if (aim < 0 || (sum + target) % 2)return 0;int n = nums.size();vector<vector<int>> dp(n + 1, vector<int>(aim + 1)); // 建表dp[0][0] = 1;                                        // 初始化for (int i = 1; i <= n; i++)                         // 填表for (int j = 0; j <= aim; j++) {dp[i][j] = dp[i - 1][j];if (j >= nums[i - 1])dp[i][j] += dp[i - 1][j - nums[i - 1]];}// 返回结果return dp[n][aim];}
};

结尾

今天我们学习了动态规划的思想,动态规划思想和数学归纳法思想有一些类似,动态规划在模拟数学归纳法的过程,已知一个最简单的基础解,通过得到前项与后项的推导关系,由这个最简单的基础解,我们可以一步一步推导出我们希望得到的那个解,把我们得到的解依次存放在dp数组中,dp数组中对应的状态,就像是数列里面的每一项。最后感谢您阅读我的文章,对于动态规划系列,我会一直更新,如果您觉得内容有帮助,可以点赞加关注,以快速阅读最新文章。

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/604269.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GeoServer发布地图服务(WMS、WFS)

文章目录 1. 概述2. 矢量数据源3. 栅格数据源 1. 概述 我们知道将GIS数据大致分成矢量数据和栅格数据&#xff08;地形和三维模型都是兼具矢量和栅格数据的特性&#xff09;。但是如果用来Web环境中&#xff0c;那么使用图片这个栅格形式的数据载体无疑是最为方便的&#xff0…

WebofScience快速检索文献的办法

Web of Science为什么老是搜不到文章&#xff0c;原来是要在这个地方全部勾选 如果是搜标题的话&#xff0c;选Title&#xff0c;输入你要搜的文章标题 另外&#xff0c;也可以在浏览器直接搜文章标题&#xff0c;得到文章的DOI&#xff0c;然后选DOI&#xff0c;直接搜DOI也行…

中通快递查询,中通快递单号查询,批量删除不需要的快递单号

快递单号的管理现在是许多企业和个人日常工作中不可或缺的一部分&#xff0c;面对堆积如山的快递单号&#xff0c;如何快速、准确地处理成了许多人的难题。今天&#xff0c;我们将为大家带来一款强大的快递单号处理软件——快递批量查询高手&#xff0c;让你从此告别繁琐的手动…

SpringCloud-高级篇(十一)

&#xff08;1&#xff09;搭建Redis-主从架构 前面我们实现了Redis的持久化&#xff0c;解决了数据安全问题&#xff0c;但是还有需要解决的问题&#xff0c;下面学习Redis的主从集群&#xff0c;解决Redis的并发能力的问题 Redis的集群往往是主从集群&#xff0c;Redsi为什么…

【leetcode】字符串中的第一个唯一字符

题目描述 给定一个字符串 s &#xff0c;找到 它的第一个不重复的字符&#xff0c;并返回它的索引 。如果不存在&#xff0c;则返回 -1 。 用例 示例 1&#xff1a; 输入: s “leetcode” 输出: 0 示例 2: 输入: s “loveleetcode” 输出: 2 示例 3: 输入: s “aabb”…

游戏缺少x3daudio1_7.dll文件怎么办?x3daudio1_7.dll丢失总共有六个解决方法

导语&#xff1a;在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“x3daudio1_7.dll丢失”。那么&#xff0c;x3daudio1_7.dll到底是什么文件呢&#xff1f;它的作用和影响又是什么呢&#xff1f;本文将为您详细介绍x3daudio1_7.dll的相关知…

LabVIEW开发自动光学焊点检测系统

LabVIEW开发自动光学焊点检测系统 LabVIEW于开发了一个自动光学焊点检测系统&#xff0c;旨在提高电子元件焊接的质量和效率。通过利用LabVIEW的高级视觉开发模块&#xff0c;该系统能够准确地识别和分类电路板上的不同焊点类型&#xff0c;如桥接、虚焊、漏焊和多锡。这一进步…

Java最大优先队列设计与实现

Java 学习面试指南&#xff1a;https://javaxiaobear.cn 1、API设计 类名MaxPriorityQueue构造方法MaxPriorityQueue(int capacity)&#xff1a;创建容量为capacity的MaxPriorityQueue对象成员方法private boolean less(int i,int j)&#xff1a;判断堆中索引i处的元素是否小…

Docker中swarm管理工具

Docker中swarm管理工具 1 安装swarm swarm是Docker自带的容器集群管理工具。 1.1 集群IP 主机名ip地址网卡名软件master192.168.108.201ens33Dockernode1192.168.108.202ens33Docker 修改主机名 # 管理节点&#xff0c;修改主机名 hostnamectl set-hostname master# 子节…

PHP代码审计之实战审代码篇2

4. 仔细观察如下代码&#xff0c;思考代码有什么缺陷&#xff0c;可能由此引发什么样的问题&#xff1f; <?php require_once("/home/rconfig/classes/usersession.class.php"); require_once("/home/rconfig/classes/ADLog.class.php"); require_onc…

【二】使用create-vue创建vue3的helloworld项目(推荐)

create-vue 官网&#xff1a;快速上手 | Vue.js create-vue 是 Vue3 的专用脚手架&#xff0c;使用 vite 创建 Vue3 的项目&#xff0c;也可以选择安装需要的各种插件&#xff0c;使用更简单。 1、使用方式 npm create vuelatest这个命令会安装和执行 create-vue&#xff0…

【MATLAB源码-第105期】基于matlab的4PAM调制解调仿真,输出误码率和误符号曲线并且和理论值对比。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 4PAM&#xff08;4-Pulse Amplitude Modulation&#xff0c;4脉冲幅度调制&#xff09;是一种数字调制技术&#xff0c;它通过改变载波信号的幅度来表示数据。在4PAM中&#xff0c;载波的幅度可以采用四种不同的水平&#xf…

天翼云搭建AIGC开发环境综合教程

一、英伟达环境安装主要流程 1、下载安装对应系统版本nVidia驱动程序安装验证 2、CUDA开发套件安装验证 3、深度学习框架安装验证MiniConda3PyTorch 4、容器化CUDA环境安装验证 5、cuDNN深度学习优化驱动安装CNN训练验证 6、制作天翼云主机私有镜像 7、分享镜像给其他用…

File-一个IO流中至关重要的类

File类 概述&#xff1a;文件和目录路径名的抽象表示&#xff0c;File 对象就代表一个路径 对与File而言&#xff0c;其封装的并不是一个真正存在的文件&#xff0c;仅仅是一个路径名而已。它可以是存在的&#xff0c;也可以是不存在的。将来要通过具体的操作把这个路径的内容…

xxljob分布式调度平台

分布式调度平台 XXL-JOB 极简入门 https://segmentfault.com/a/1190000041674725xxl-job-core 模块&#xff1a;XXL-JOB 核心。后续我们在编写执行器时&#xff0c;会引入该模块。 xxl-job-admin 模块&#xff1a;调度中心。 xxl-job-executor-samples 模块&#xff1a;提供了…

Python print()函数高级用法和 len()函数详解:获取字符串长度或字节数

Python print()函数高级用法 我们使用 print() 函数时&#xff0c;都只输出了一个变量&#xff0c;但实际上 print() 函数完全可以同时输出多个变量&#xff0c;而且它具有更多丰富的功能。 print() 函数的详细语法格式如下&#xff1a; print (value,...,sep,end\n,filesys.s…

如何使用 Jmeter 进行压力测试?

准备测试计划&#xff1a;在 JMeter 中创建一个新的测试计划&#xff08;Test Plan&#xff09;。添加线程组&#xff1a;在测试计划中添加一个线程组&#xff08;Thread Group&#xff09;&#xff0c;用于模拟并发用户。右键点击测试计划 -> 添加 -> Threads (Users) -…

Turn.js 实现翻书效果

接到了任务&#xff0c;要把孩子画的画放到网页上去&#xff0c;翻页效果还要逼真一点。搜索到了turn.js这个前端翻页组件&#xff0c;效果不错。先上图看效果。 网页实际效果&#xff1a;星月夜诗集 turn.js的官网地址&#xff1a;Turn.js: The page flip effect in HTML5 …

高校电力能耗监测精细化管理系统,提升能源利用效率的利器

电力是高校不可离开的重要能源&#xff0c;为学校相关管理人员提供在线用能查询统计等服务。通过对学校照明用电、空调用电等数据的采集、监控、分析&#xff0c;为学校电能管理制定合理的能源政策提供参考。同时&#xff0c;也可以培养学生的节能意识&#xff0c;学校后勤电力…

[MySQL]视图索引以及连接查询案列

目录 1.视图 1.1视图是什么 1.2视图的作用 1.3操作 1.3.1创建视图 1.3.2视图的修改 1.3.3删除视图 1.3.4查看视图 2.索引 2.1什么是索引 2.2为什么要使用索引 2.3索引的优缺点 2.3.1优点 2.3.2缺点 2.4索引的分类 3.连接查询案列 4.思维导图 1.视图 1.1视图是什么 视图…