秋招复习之堆

目录

前言

堆的常用操作

堆的实现(大根堆)

1.   堆的存储与表示

2.   访问堆顶元素

3.   元素入堆

4.   堆顶元素出堆

Top-k 问题

方法一:遍历选择

方法二:排序

方法三:堆

总结


前言

秋招复习之堆。


「堆 heap」是一种满足特定条件的完全二叉树,主要可分为两种类型,如图所示。

  • 「小顶堆 min heap」:任意节点的值 ≤ 其子节点的值。
  • 「大顶堆 max heap」:任意节点的值 ≥ 其子节点的值。

堆作为完全二叉树的一个特例,具有以下特性。

  • 最底层节点靠左填充其他层的节点都被填满
  • 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
  • 对于大顶堆(小顶堆),堆顶元素(根节点)的值是最大(最小)的。

堆的常用操作

许多编程语言提供的是「优先队列 priority queue」,这是一种抽象的数据结构,定义为具有优先级排序的队列。

实际上,堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。

在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。

类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过设置一个 flag 或修改 Comparator 实现“小顶堆”与“大顶堆”之间的转换。代码如下所示:

/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1/* 获取堆大小 */
int size = maxHeap.size();/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1/* 获取堆大小 */
int size = maxHeap.size();/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());

堆的实现(大根堆)

1.   堆的存储与表示

完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,因此我们将采用数组来存储堆

 将索引映射公式封装成函数

/* 获取左子节点的索引 */
int left(int i) {return 2 * i + 1;
}/* 获取右子节点的索引 */
int right(int i) {return 2 * i + 2;
}/* 获取父节点的索引 */
int parent(int i) {return (i - 1) / 2; // 向下整除
}
/* 获取左子节点的索引 */
int left(int i) {return 2 * i + 1;
}/* 获取右子节点的索引 */
int right(int i) {return 2 * i + 2;
}/* 获取父节点的索引 */
int parent(int i) {return (i - 1) / 2; // 向下整除
}

2.   访问堆顶元素

/* 访问堆顶元素 */
int peek() {return maxHeap.get(0);
}
/* 访问堆顶元素 */
int peek() {return maxHeap[0];
}

3.   元素入堆

给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏,因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。

考虑从入堆节点开始,从底至顶执行堆化。如图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。(就是一直和父比较,大就换)

设节点总数为 n ,则树的高度为 O(log⁡N) 。由此可知,堆化操作的循环轮数最多为  O(log⁡N) ,元素入堆操作的时间复杂度为  O(log⁡N) 。

/* 元素入堆 */
void push(int val) {// 添加节点maxHeap.add(val);// 从底至顶堆化siftUp(size() - 1);
}/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {while (true) {// 获取节点 i 的父节点int p = parent(i);// 当“越过根节点”或“节点无须修复”时,结束堆化if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))break;// 交换两节点swap(i, p);// 循环向上堆化i = p;}
}
/* 元素入堆 */
void push(int val) {// 添加节点maxHeap.push_back(val);// 从底至顶堆化siftUp(size() - 1);
}/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {while (true) {// 获取节点 i 的父节点int p = parent(i);// 当“越过根节点”或“节点无须修复”时,结束堆化if (p < 0 || maxHeap[i] <= maxHeap[p])break;// 交换两节点swap(maxHeap[i], maxHeap[p]);// 循环向上堆化i = p;}
}

4.   堆顶元素出堆

堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化进行修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。

  1. 交换堆顶元素与堆底元素(交换根节点与最右叶节点)。
  2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,因此实际上删除的是原来的堆顶元素)。
  3. 从根节点开始,从顶至底执行堆化

如图所示,“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。

与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 O(log⁡n) 。代码如下所示:

/* 元素出堆 */
int pop() {// 判空处理if (isEmpty())throw new IndexOutOfBoundsException();// 交换根节点与最右叶节点(交换首元素与尾元素)swap(0, size() - 1);// 删除节点int val = maxHeap.remove(size() - 1);// 从顶至底堆化siftDown(0);// 返回堆顶元素return val;
}/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {while (true) {// 判断节点 i, l, r 中值最大的节点,记为 maint l = left(i), r = right(i), ma = i;if (l < size() && maxHeap.get(l) > maxHeap.get(ma))ma = l;if (r < size() && maxHeap.get(r) > maxHeap.get(ma))ma = r;// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出if (ma == i)break;// 交换两节点swap(i, ma);// 循环向下堆化i = ma;}
}
/* 元素出堆 */
void pop() {// 判空处理if (isEmpty()) {throw out_of_range("堆为空");}// 交换根节点与最右叶节点(交换首元素与尾元素)swap(maxHeap[0], maxHeap[size() - 1]);// 删除节点maxHeap.pop_back();// 从顶至底堆化siftDown(0);
}/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {while (true) {// 判断节点 i, l, r 中值最大的节点,记为 maint l = left(i), r = right(i), ma = i;if (l < size() && maxHeap[l] > maxHeap[ma])ma = l;if (r < size() && maxHeap[r] > maxHeap[ma])ma = r;// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出if (ma == i)break;swap(maxHeap[i], maxHeap[ma]);// 循环向下堆化i = ma;}
}

Top-k 问题

Q:给定一个长度为 n的无序数组 nums ,请返回数组中最大的 k个元素。

方法一:遍历选择

其时间复杂度趋向于O(n2) ,非常耗时。

 当 k=n 时,可以得到完整的有序序列,此时等价于“选择排序”算法。

方法二:排序

如图所示,我们可以先对数组 nums 进行排序,再返回最右边的 k 个元素,时间复杂度为 O(nlog⁡n) 。

显然,该方法“超额”完成任务了,因为我们只需找出最大的k个元素即可,而不需要排序其他元素。

方法三:堆

可以基于堆更加高效地解决 Top-k 问题,流程如图所示。

  1. 初始化一个小顶堆,其堆顶元素最小。
  2. 先将数组的前 k 个元素依次入堆。
  3. 从第 k+1 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
  4. 遍历完成后,堆中保存的就是最大k 个元素。

天才!!!

/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {// 初始化小顶堆Queue<Integer> heap = new PriorityQueue<Integer>();// 将数组的前 k 个元素入堆for (int i = 0; i < k; i++) {heap.offer(nums[i]);}// 从第 k+1 个元素开始,保持堆的长度为 kfor (int i = k; i < nums.length; i++) {// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆if (nums[i] > heap.peek()) {heap.poll();heap.offer(nums[i]);}}return heap;
}
/* 基于堆查找数组中最大的 k 个元素 */
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {// 初始化小顶堆priority_queue<int, vector<int>, greater<int>> heap;// 将数组的前 k 个元素入堆for (int i = 0; i < k; i++) {heap.push(nums[i]);}// 从第 k+1 个元素开始,保持堆的长度为 kfor (int i = k; i < nums.size(); i++) {// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆if (nums[i] > heap.top()) {heap.pop();heap.push(nums[i]);}}return heap;
}

总共执行了 n轮入堆和出堆,堆的最大长度为 k ,因此时间复杂度为 O(nlog⁡k) 。该方法的效率很高,当 k 较小时,时间复杂度趋向 O(n) ;当 n 较大时,时间复杂度不会超过 O(nlog⁡n) 。

另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 k个元素的动态更新。


总结

  • 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。
  • 优先队列的定义是具有出队优先级的队列,通常使用堆来实现。
  • 堆的常用操作及其对应的时间复杂度包括:元素入堆 O(log⁡n)、堆顶元素出堆 O(log⁡n) 和访问堆顶元素 O(1) 等。
  • 完全二叉树非常适合用数组表示,因此我们通常使用数组来存储堆。
  • 堆化操作用于维护堆的性质,在入堆和出堆操作中都会用到。
  • 输入 n 个元素并建堆的时间复杂度可以优化至 O(n) ,非常高效。
  • Top-k 是一个经典算法问题,可以使用堆数据结构高效解决,时间复杂度为 O(nlog⁡K) 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/604223.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apache Camel笔记

Apache Camel笔记 1. Apache Camel概念 Apache Camel是一个轻量级的应用集成开发框架&#xff0c;专注于简化集成应用的开发。它基于Enterprise Integration Patterns&#xff08;企业集成模式&#xff0c;简称EIP&#xff09;的设计理念&#xff0c;提供了灵活的路由和中介机制…

[java]JAVA中文版API手册 -jdk_api_1.8

有mac和win版本 链接&#xff1a;https://pan.baidu.com/s/14WGXJYBICeSxgg6OxBVGRQ 提取码&#xff1a;c03p

Video classification with UniFormer基于统一分类器的视频分类

本文主要介绍了UniFormer: Unified Transformer for Efficient Spatial-Temporal Representation Learning 代码&#xff1a;https://github.com/Sense-X/UniFormer/tree/main/video_classification UNIFormer 动机 由于视频具有大量的局部冗余和复杂的全局依赖关系&#xf…

C语言基本语句介绍

c程序的执行部分是由语句组成的。程序的功能也是由执行语句来实现的&#xff0c;c语句分为6类 1表达式语句 表达式语句由表达式加上分号“&#xff1b;”组成 一般形式&#xff1a;表达式&#xff1b; 2函数调用语句 由函数名&#xff0c;实际参数加上分号“&#xff1b;”…

【MySQL】事务管理

文章目录 什么是事务为什么会出现事务事务的版本支持事务的提交方式事务的相关演示事务的隔离级别查看与设置隔离级别读未提交&#xff08;Read Uncommitted&#xff09;读提交&#xff08;Read Committed&#xff09;可重复读&#xff08;Repeatable Read&#xff09;串行化&a…

神经网络中参数与超参数的区别是什么?

在神经网络中&#xff0c;参数和超参数是两个非常重要但概念上不同的元素。它们的主要区别在于它们在模型训练和构建中的角色和如何被确定。 参数&#xff08;Parameters&#xff09; 定义&#xff1a;参数是神经网络在训练过程中学习的变量。这些包括权重&#xff08;weights…

Rust-vec!与Vec::with_capacity初始化数组的区别

前言 这篇文章的实际上是对我在知乎上&#xff0c;下面这个问题的答案补充。 Rust能不能动态生成固定大小的数组&#xff08;array&#xff09;&#xff1f; 对于问题中的代码 fn main(){let n 3;let mut arr:[i32; n] [0;n] ; println!(":?", arr); }进行如下…

System学习笔记 - MacOs编译环境配置(一)

前言 好几年没有记录过东西&#xff0c;一是确实很忙&#xff0c;二是人也变懒了。新年开个新的学习计划&#xff0c;希望能坚持下去。 SystemC 简介 SystemC是一个建模语言&#xff0c;其本质是一个C的库&#xff0c;一般用于SoC建模&#xff0c;具体介绍不赘述&#xff0…

【学习记录】找最低位1/模块多次例化

一、找最低位1 要求&#xff1a;找出Nbit数据a中最低位1所在的位置&#xff0c;用onehot形式data_onehot表示 假设a1010_0100 将a减1&#xff0c;则可得最低位1后面所有数据为0的b,b1010_0011将b取反&#xff0c;得c,c0101_1100将a与c进行与操作&#xff0c;则可得 a&c 0…

CEEMDAN +组合预测模型(Transformer - BiLSTM+ ARIMA)

目录 往期精彩内容&#xff1a; 前言 1 风速数据CEEMDAN分解与可视化 1.1 导入数据 1.2 CEEMDAN分解 2 数据集制作与预处理 3 基于CEEMADN的 Transformer - BiLSTM 模型预测 3.1 定义CEEMDAN-Transformer - BiLSTM预测模型 3.2 设置参数&#xff0c;训练模型 4 基于A…

【Python学习】Python学习6-循环语句

目录 【Python学习】【Python学习】Python学习6-循环语句 前言for循环for循环示例通过序列索引迭代循环使用 else 语句 while循环while循环示例continue和 break无限循环循环使用 else 语句简单语句组 嵌套循环Python for 循环嵌套语法&#xff1a;Python while 循环嵌套语法&…

网络安全—IPSec安全策略

文章目录 网络拓扑添加策略ESP添加筛选器添加筛选器的操作另一台主机设置 AH 使用Windows Server 2003系统 网络拓扑 client1 IP 192.168.17.105client2 IP 192.168.17.106 只要保证两个主机在同一网段接口&#xff0c;即互相ping通即可完成策略的实现 下面的所有通讯都只是…

阿里云服务器ECS入门与基础运维

一、云服务器简介 1、服务器&#xff1a; (1) 概念&#xff1a; 服务器本身就是一种电脑&#xff0c;同样具备CPU、内存、硬盘、网卡、电源等硬件。 互联网对外提供网站、游戏、在线会议、网盘等服务&#xff0c;都需要将这些互联网服务部署到服务器中。 (2) 特点&#xf…

C语言编译器(C语言编程软件)完全攻略(第二十六部分:C-Free使用教程(使用C-Free编写C语言程序))

介绍常用C语言编译器的安装、配置和使用。 二十六、C-Free使用教程&#xff08;使用C-Free编写C语言程序&#xff09; 1、安装C-Free 5.0 C-Free 是一款国产的Windows下的C/C IDE&#xff0c;最新版本是 5.0&#xff0c;整个软件才 14M&#xff0c;非常轻巧&#xff0c;安装…

shell编程学习(二)

变量的类型 预定义变量 $$ 当前进程PID $? 命令执行后的返回状态.0 为执行正确&#xff0c;非 0 为执行错误 $# 位置参数的数量 $* 所有位置参数的内容 …

前端性能优化之图像优化

图像优化问题主要可以分为两方面&#xff1a;图像的选取和使用&#xff0c;图像的加载和显示。 图像基础 HTTP Archive上的数据显示&#xff0c;网站传输的数据中&#xff0c;60%的资源都是由各种图像文件组成的&#xff0c;当然这些是将各类型网站平均的结果&#xff0c;单独…

Mysql SQL审核平台Yearning本地部署

文章目录 前言1. Linux 部署Yearning2. 本地访问Yearning3. Linux 安装cpolar4. 配置Yearning公网访问地址5. 公网远程访问Yearning管理界面6. 固定Yearning公网地址 前言 Yearning 简单, 高效的MYSQL 审计平台 一款MYSQL SQL语句/查询审计工具&#xff0c;为DBA与开发人员使用…

阿里云服务器公网带宽1M/3M/5M/10M/50M百兆下载速度表

阿里云服务器公网带宽上传和下载速度对照表&#xff0c;1M带宽下载速度是128KB/秒&#xff0c;为什么不是1M/秒&#xff1f;阿腾云atengyun.com分享阿里云服务器带宽1M、2M、3M、5M、6M、10M、20M、30M、50M、100M及200M等公网带宽下载和上传速度对照表&#xff0c;附带宽价格表…

C# Winform 在低DPI创建窗体后,在高DPI运行时,窗体会自动拉伸,导致窗体显示不全

C# Winform 在低DPI创建窗体后&#xff0c;在高DPI运行时&#xff0c;窗体会自动拉伸&#xff0c;导致窗体显示不全&#xff0c; 比如在分辨率为100% 的电脑创建C#项目&#xff0c;当运动到分辨率为125%的电脑运行时&#xff0c;后者运行的窗体会自动拉伸&#xff0c;窗体显示…

【linux学习笔记】网络

目录 【linux学习笔记】网络检查、监测网络ping-向网络主机发送特殊数据包traceroute-跟踪网络数据包的传输路径netstat-检查网络设置及相关统计数据 【linux学习笔记】网络 检查、监测网络 ping-向网络主机发送特殊数据包 最基本的网络连接命令就是ping命令。ping命令会向指…