imgaug库指南(八):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊
imgaug库指南(五):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 中值模糊/滤波,并介绍了如何利用【中值滤波】过滤椒盐噪声
imgaug库指南(六):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 双边模糊/滤波
imgaug库指南(七):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 运动模糊

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 均值迁移模糊


均值漂移模糊(MeanShiftBlur)

功能介绍

iaa.MeanShiftBlurimgaug库中的一个方法,用于对图像进行均值漂移模糊。均值漂移是一种统计方法,用于在图像中平滑像素值,从而达到模糊的效果。这种方法在图像处理中常用于降噪和细节保留。

语法

import imgaug.augmenters as iaa
aug = iaa.MeanShiftBlur(spatial_radius=(5.0, 40.0), color_radius=(5.0, 40.0))
  • spatial_radius: 决定了在空间上,均值漂移算法应该考虑的像素邻域的大小。
    • 如果spatial_radius是一个数字,那么所有图像都会应用这个数值;
    • 如果spatial_radius是一个元组(a, b),那么所有图像都会在区间[a. b]上均匀采样;
  • color_radius: 决定了在颜色上,均值漂移算法应该考虑的像素邻域的大小。
    • 如果color_radius是一个数字,那么所有图像都会应用这个数值;
    • 如果color_radius是一个元组(a, b),那么所有图像都会在区间[a. b]上均匀采样;

示例代码

  1. 使用不同的spatial_radius
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建均值迁移增强器
aug1 = iaa.MeanShiftBlur(spatial_radius=5, color_radius=15)
aug2 = iaa.MeanShiftBlur(spatial_radius=15, color_radius=15)
aug3 = iaa.MeanShiftBlur(spatial_radius=30, color_radius=15)# 对图像进行均值迁移模糊处理
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Blurred Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Blurred Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Blurred Image3")
plt.show()

运行结果如下:

图1 原图及均值迁移模糊结果可视化

  1. 使用不同的color_radius
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建均值迁移增强器
aug1 = iaa.MeanShiftBlur(spatial_radius=15, color_radius=5)
aug2 = iaa.MeanShiftBlur(spatial_radius=15, color_radius=15)
aug3 = iaa.MeanShiftBlur(spatial_radius=15, color_radius=30)# 对图像进行均值迁移模糊处理
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Blurred Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Blurred Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Blurred Image3")
plt.show()

运行结果如下:

图2 原图及均值迁移模糊结果可视化

注意事项

  1. 参数选择:均值漂移的参数 spatial_radiuscolor_radius是影响模糊程度的关键参数。较小的radius会导致更精细的模糊效果,而较大的radius则会导致更粗糙的模糊效果。需要根据具体需求调整步长。
  2. 与其他增强器的结合:可以与imgaug库中的其他增强器结合使用,如对比度调整、亮度调整等,以获得更丰富的效果。在使用多个增强器时,要注意它们的顺序和效果叠加。
  3. 计算效率:均值漂移是一种计算相对较慢的模糊方法,尤其是在处理大图像时。为了提高效率,可以考虑使用其他更快的模糊方法,或者在处理大图像时进行区域裁剪。
  4. 结果的重复性:每次应用均值漂移模糊时,可能会产生稍微不同的结果,因为它是基于随机数生成的。为了确保结果的可重复性,可以使用aug.to_deterministic()方法将增强器转换为确定性状态。

总结

iaa.MeanShiftBlurimgaug库中一个非常有用的均值漂移模糊增强器。它可以有效地对图像进行平滑处理,去除噪声并保留细节。与其他增强器结合使用时,可以创造出丰富多样的图像效果。然而,使用时需要注意步长的选择、计算效率、与其他增强器的结合以及结果的重复性等问题。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/602790.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql原理--事务

1.事务的起源 对于大部分程序员来说,他们的任务就是把现实世界的业务场景映射到数据库世界。比如银行为了存储人们的账户信息会建立一个 account 表: CREATE TABLE account (id INT NOT NULL AUTO_INCREMENT COMMENT 自增id,name VARCHAR(100) COMMENT …

excel统计分析——两因素有重复方差分析

参考资料:生物统计学 无重复观测值的两因素方差分析只能研究两个因素的主效应,不能考察因素间的交互作用,只有在确定因素间不存在交互作用时才能进行无重复观测值的试验和分析。为了准确估计因素的主效应、交互作用和随机误差,每个…

061:vue中通过map修改一维数组,增加一些变量

第061个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…

K8S-应用部署

1 应用管理解读 2 应用部署实践 资源对象管理关系 资源对象管理实践 手工方式: kubectl run pod名称 --imageimage地址资源清单方式: apiVersion: v1 kind: Pod metadata:labels:run: my-podname: my-pod spec:containers:- image: kubernetes-register.sswang.co…

jenkins安装报错:No such plugin: cloudbees-folder

jenkins安装报错:No such plugin: cloudbees-folder 原因是缺少cloudbees-folder.hpi插件 解决: 一,重新启动 http://xxx:8800/restart 二,跳到重启界面时,点击系统设置 三,找到安装插件,然…

1-03C语言超基础语法

一、概述 为了更好的进行后续的课程,避免出现"老师,我还没学过的东西,你怎么直接用?"诸如此类疑问,本小节就诞生了。 实际上,整个第一个大章节的所有小节都是"C语言基础语法"&#x…

动手学深度学习之卷积神经网络之池化层

池化层 卷积层对位置太敏感了,可能一点点变化就会导致输出的变化,这时候就需要池化层了,池化层的主要作用就是缓解卷积层对位置的敏感性 二维最大池化 这里有一个窗口,来滑动,每次我们将窗口中最大的值给拿出来 还是上…

【REST2SQL】02 GO连接Oracle数据库

Oracle数据库我用的最多,先研究Oracle,Go连接Oracle并实现REST和SQL服务。 1 Oracle数据库的安装 我这里安装使用的是Oracle 11g , 安装过程省略5217字。 2 安装Go-ora依赖 go get github.com/sijms/go-ora/v2 安装成功后在GOPATH目录可见: 3 创建一…

基于ElementUI封装的下拉树选择可搜索单选多选清空功能

效果&#xff1a; 组件代码 /*** 树形下拉选择组件&#xff0c;下拉框展示树形结构&#xff0c;提供选择某节点功能&#xff0c;方便其他模块调用* author wy* date 2024-01-03 * 调用示例&#xff1a;* <tree-select * :height"400" // 下拉框中树形高度* …

【数据结构】二叉树的概念及堆

前言 我们已经学过了顺序表、链表、栈和队列这些属于线性结构的数据结构&#xff0c;那么下面我们就要学习我们第一个非线性结构&#xff0c;非线性结构又有哪些值得我们使用的呢&#xff1f;那么接下来我们就将谈谈树的概念了。 1.树的概念与结构 1.1树的概念 树是一种非线性…

python数据可视化之折线图案例讲解

学习完python基础知识点&#xff0c;终于来到了新的模块——数据可视化。 我理解的数据可视化是对大量的数据进行分析以更直观的形式展现出来。 今天我们用python数据可视化来实现一个2023年三大购物平台销售额比重的折线图。 准备工作&#xff1a;我们需要下载用于生成图表的第…

2024苹果Mac电脑免费文件数据恢复软件EasyRecovery

EasyRecovery是一个操作安全、价格便宜、用户自主操作的非破坏性的只读应用程序&#xff0c;它不会往源驱上写任何东西&#xff0c;也不会对源驱做任何改变&#xff01;EasyRecovery是一个操作安全、价格便宜、用户自主操作的非破坏性的只读应用程序&#xff0c;它不会往源驱上…

Android 15即将到来,或将推出5大新功能特性

Android15 OneUI电池优化 三星最近完成了对其所有设备的稳定版 One UI 6.0 更新的推出&#xff0c;引起了用户的极大兴奋。据新出现的互联网统计数据显示&#xff0c;即将发布的基于 Android 15 的 One UI 7 将通过优化电池和功耗来重新定义用户体验&#xff0c;这是一项具有突…

【开源项目】WPF 扩展组件 -- Com.Gitusme.Net.Extensiones.Wpf

一、项目简介 Com.Gitusme.Net.Extensiones.Wpf 是一款 Wpf 扩展组件。基于.Net Core 3.1 开发&#xff0c;当前最新 1.0.1 版本。包含 核心扩展库&#xff08;Com.Gitusme.Net.Extensiones.Core&#xff09;、视频渲染&#xff08;Com.Gitusme.Media.Video&#xff09;、串口…

基于多反应堆的高并发服务器【C/C++/Reactor】(中)线程池的启动和从线程池中取出一个反应堆实例

一、线程池的启动 &#xff08;主线程&#xff09; // 启动线程池 &#xff08;主线程&#xff09; void threadPoolRun(struct ThreadPool* pool) {/*线程池被创建出来之后&#xff0c;接下来就需要让线程池运行起来&#xff0c;其实就是让线程池里的若干个子线程运行起来*//…

小微企业在银行信贷相关产品和机器学习建模案例_论文科研_企业调研

各银行小微企业贷款业务 互联网的时代&#xff0c;大量新信息技术的涌现和网络的无处不在&#xff0c;想要抢占这片金融天地&#xff0c;必须重视小微金融业务&#xff0c;小微企业是一直具有重大潜力的客户&#xff0c;商业银行、消金公司发展小微信贷业务可以拓宽自身客户群…

系统学英语 — 音标音节 — 能读就能写

目录 文章目录 目录概览12 个单元音8 个双元音28 个辅音音节 概览 12 个单元音 序号发音音标助记字母组合备注1拖长音 前腔[i:]eate、ea、ee、ie2短促音 前腔[i]bige、i、y3拖长音 后腔[a:]aska、ar4短促音 中腔[ʌ]runu、o、ou、oo5拖长音 中腔[ə:]earlyer、ir、or、ur…

LLM漫谈(二)| QAnything支持任意格式文件或数据库的本地知识库问答系统

一、QAnything介绍 QAnything (Question and Answer based on Anything) 是致力于支持任意格式文件或数据库的本地知识库问答系统&#xff0c;可断网安装使用。 您的任何格式的本地文件都可以往里扔&#xff0c;即可获得准确、快速、靠谱的问答体验。 目前已支持格式: PDF&…

基于商品列表的拖拽排序后端实现

目录 一&#xff1a;实现思路 二&#xff1a;实现步骤 二&#xff1a;实现代码 三&#xff1a;注意点 一&#xff1a;实现思路 后台实现拖拽排序通常需要与前端进行配合&#xff0c;对商品的列表拖拽排序&#xff0c;前端需要告诉后端拖拽的元素和拖动的位置。 这里我们假…

MySQL第四战:视图以及常见面试题(上)

目录 目录&#xff1a; 一.视图 1.介绍什么是视图 2.视图的语法 语法讲解 实例操作 二.MySQL面试题 1.SQL脚本 2.面试题实战 三.思维导图 目录&#xff1a; 随着数字化时代的飞速发展&#xff0c;数据库技术&#xff0c;特别是MySQL&#xff0c;已经成为IT领域中不可…