第34期 | GPTSecurity周报

图片

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大型语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。

Security Papers

1. Constitutional AI: Harmlessness from AI Feedback  

简介:随着人工智能系统能力的增强,研究者希望能够借助其力量来监督其他AI。为了实现这一目标,研究者采用了一种自我改进的方法,试图训练一种无害的AI助手。该过程包括两个阶段:监督学习和强化学习。在监督学习阶段,研究者从初始模型中采样,然后生成自我批评和修订。根据修订后的回复,对原始模型进行微调。在强化学习阶段,研究者从微调后的模型中采样,使用一个模型来评估哪两个样本更好。然后,从AI偏好数据集中训练偏好模型。这些方法使更精确地控制AI行为和减少人类标签成为可能。通过这种训练方法,研究者能够提高AI助手的准确性和效率,同时避免潜在的有害行为。这种方法对于监督和规范AI的发展具有重要意义,有助于确保AI系统的安全性和可靠性。

链接:

https://arxiv.org/abs/2212.08073.pdf

2. Silent Guardian: Protecting Text from Malicious Exploitation by Large Language Models

简介:随着大型语言模型(LLMs)在各种下游任务中的快速发展和显著成功,人们对其潜力和能力赞叹不已。然而,这种开放性的技术也带来了新的安全和隐私问题。由于LLMs具有强大的模仿和生成能力,它们可能被用于抄袭或模仿写作,进而侵犯原创内容的版权,或基于某个源文本制造滥用的虚假信息。更为严重的是,LLMs还能分析网络文本,从而推断出个人隐私。面对这一新形势,以往的文本保护措施显得力不从心。为了应对这一挑战,研究者提出了一种名为“沉默守护者”(SG)的文本保护机制。该机制专门针对LLMs设计,旨在从源头上防止恶意使用文本。当LLMs接收到受保护的文本时,“沉默守护者”会发挥作用,使模型拒绝生成响应。这样一来,就能有效地遏制利用LLMs进行的恶意行为,保护原创内容和个人隐私的安全。

链接:

https://arxiv.org/abs/2312.09669.pdf

3. Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs

简介:随着大型语言模型(LLMs)的快速发展,它们展现出了新的、难以预测的能力,其中一些可能带来潜在风险。为了确保LLMs的安全和负责任部署,开发人员需要评估这些“危险能力”并识别相关风险。在这项研究中,研究者首次收集了一个开源数据集,旨在评估LLMs中的保护措施,并促进更安全的开源LLMs的低成本部署。他们选择了六种流行的LLMs,并对这些模型对于特定指示的响应进行了标注和评估。基于这些标注数据,研究者进一步训练了几个BERT式分类器。令人惊喜的是,这些小型分类器在自动安全评估方面表现出了与GPT-4相当的性能。这一发现为低成本、高效地评估LLMs的安全性提供了新的可能。

链接:

https://arxiv.org/abs/2308.13387.pdf

4. Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in Language Models

简介:在这项研究中,研究者提出了一种名为ProAttack的新型高效方法,用于执行基于提示的干净标签后门攻击。这种方法利用提示本身作为触发器,无需外部触发器,确保中毒样本的正确标记,从而提高了后门攻击的隐蔽性。为了验证ProAttack在文本后门攻击中的性能,研究者进行了广泛的实验,涵盖了资源丰富和少样本文本分类任务。实验结果表明,ProAttack在文本后门攻击中展现出竞争力,尤其是在资源丰富的设置中。在无需外部触发器的干净标签后门攻击基准测试中,ProAttack实现了最先进的攻击成功率。

链接:

https://arxiv.org/abs/2305.01219.pdf

5. Detecting Language Model Attacks with Perplexity

简介:一种针对大型语言模型(LLMs)的新型黑客攻击技术已经出现。这种攻击利用对抗后缀来欺骗模型,生成具有潜在危险性的响应。攻击者可以利用这种技术诱导LLMs向恶意用户提供复杂的指示,用于制造炸药、策划银行抢劫或协助创建攻击性内容。为了评估这种对抗后缀的威胁,研究者利用开源LLM(GPT-2)来分析具有对抗后缀的查询的困惑度。结果显示,这些具有对抗后缀的查询的困惑度值非常高,这表明它们对于模型具有很大的迷惑性。在研究过程中,研究者还探索了各种常规(非对抗性)提示类型,并发现这些提示类型在纯困惑度过滤中存在假阳性的问题。这意味着使用困惑度作为唯一过滤条件的做法可能会导致误判。为了解决假阳性问题并更准确地检测对抗攻击,研究者采用基于困惑度和令牌长度的Light-GBM训练方法。在测试集中,这种方法能够有效地解决假阳性问题,并正确检测大多数对抗攻击。

链接:

https://arxiv.org/abs/2308.14132v3.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/602058.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构之绪论

一个著名公式: 程序数据结构算法 非数值计算:无法用数学的公式或方程来描述 描述非数值计算问题的数据模型不是数学方程,而是诸如表,树和图之类的具有逻辑关系的数据 数据结构:是一门研究非数值计算的程序设计中计算机…

pyqt6 + pycharm 搭建+使用入门

首先安装PyQt6和PyQt6-tools。使用如下命令: pip install PyQt6 PyQt6-tools 但是运行后会报如下错误: 这个时候按照提示执行命令升级pip即可 python.exe -m pip install --upgrade pip 配置pycharm: 打开pycharm,进入setting&am…

大事务提交优化

经常性的报死锁异常,经常性的主从延迟......通过报错信息按图索骥,发现代码是这样的。 这是一段商品发布的逻辑,我们可以看到参数校验、查询、最终的insert以及update全部揉在一个事务中。遇到批量发布商品的时候就经常出现问题了&#xff0c…

css实现一个斑马条纹动画,实现一个理发店门口的小转转,进度条动画同理!

css实现一个斑马条纹动画,实现一个理发店门口的小转转 前置基础知识 css背景background的重复渐变属性repeating-linear-gradient() 该属性类似于linear-gradient(),但他会在整个方向上重复渐变以覆盖整个容器 一、先写一个普通渐变例子linear-gradient() &…

【JAVA】volatile 关键字的作用

🍎个人博客:个人主页 🏆个人专栏: JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 volatile 的作用: 结语 我的其他博客 前言 在多线程编程中,保障数据的一致性和线程之间的可见性是…

复旦MBA科创青干营(二期):探索合肥科创企业的创新之路

11月18日-19日,复旦MBA科创青干营二期学生开启了整合实践活动的第三次企业参访,前往位于合肥的蔚来第二先进制造基地、安徽万邦医药科技股份有限公司和合肥国轩高科动力能源有限公司,在学术导师和科创企业家“双导师”的指导下,深…

【C++】STL 算法 ④ ( 函数对象与谓词 | 一元函数对象 | “ 谓词 “ 概念 | 一元谓词 | find_if 查找算法 | 一元谓词示例 )

文章目录 一、函数对象与谓词1、一元函数对象2、" 谓词 " 概念3、find_if 查找算法 二、一元谓词示例1、代码示例 - 一元谓词示例2、执行结果 一、函数对象与谓词 1、一元函数对象 " 函数对象 " 是通过 重载 函数调用操作符 () 实现的 operator() , 函数对…

【数值分析】非线性方程求根,牛顿法,牛顿下山法,matlab实现

4. 牛顿法 收敛时牛顿法的收敛速度是二阶的,不低于二阶。如果函数有重根,牛顿法一般不是二阶收敛的。 x k 1 x k − f ( x k ) f ′ ( x k ) x_{k1}x_k- \frac{f(x_k)}{f(x_k)} xk1​xk​−f′(xk​)f(xk​)​ matlab实现 %% 牛顿迭代例子 f (x) x…

创建Qt项目

项目工程名称一般不要有特殊符号,不要有中文 项目工程保存路径可修改的,但路径不要带中文 构建系统,有3种,这里使用qmake qmake和cmake区别 构建过程不同,项目管理不同。 1、构建过程,qmake是Qt框架自带的…

MySQL数据库:索引

目录 一. 索引的价值 二. 数据库与磁盘的IO 2.1 磁盘的结构 2.2 磁盘访问 2.3 MySQL与磁盘的交互 三. 对索引的理解 3.1 Page的结构 3.2 B树和B树索引结构 3.2.1 B树的结构 3.2.2 B树 3.3 聚簇索引和非聚簇索引 四. 索引的操作 4.1 索引的创建 4.2 索引的查看 4.…

new FormData 同时发送表单 json 以及文件二进制流

需要新增时同时发送表单 json 以及对应的文件即可使用以下方法传参 let formDataParams new FormData(); 首先通过 new FormData() 创建你需要最后发送的表单 接着将你的对象 json 存储,注意使用 new Blob 创建大表单转换成 json 格式。以…

解决:TypeError: ‘tuple’ object does not support item assignment

解决:TypeError: ‘tuple’ object does not support item assignment 文章目录 解决:TypeError: tuple object does not support item assignment背景报错问题报错翻译报错位置代码报错原因解决方法方法一:方法二:今天的分享就到…

【Flink精讲】Flink数据延迟处理

面试题:Flink数据延迟怎么处理? 将迟到数据直接丢弃【默认方案】将迟到数据收集起来另外处理(旁路输出)重新激活已经关闭的窗口并重新计算以修正结果(Lateness) Flink数据延迟处理方案 用一个案例说明三…

开源许可证

文章目录 一、简介二、详细信息参考 一、简介 开源是指公开源代码,但这并不代表就是免费的。 开源许可证是一种法律许可。 通过它,版权拥有人明确允许,用户可以免费地使用、修改、共享版权软件。 版权法默认禁止共享,也就是说&am…

如何选择消息队列?Kafka 与 RabbitMQ

在上一期中,我们讨论了使用消息队列的好处。然后,我们回顾了消息队列产品的历史。现在看来,当我们需要在项目中使用消息队列时,Kafka 是首选产品。但是,当我们考虑特定要求时,它并不总是最佳选择。 数据库…

【Kubernetes】认证授权RBAC (一)

认证授权RBAC 一、k8s安全管理:认证、授权、准入控制概述1.1、简介【1】认证基本介绍【2】授权基本介绍【3】准入控制基本介绍 1.2、认证【1】客户端认证【2】Bearertoken【3】Serviceaccount【4】拓展:kubeconfig文件 1.3、授权【1】什么是RBAC&#xf…

rust 注释文档生成 cargo doc

rust的cargo文档生成 只需要在每个函数写清楚注释,就可以自动生成文档,很方便 即不用写文档,又可以快速查看,是开发rust的必备技能 rust安装和开发环境配置,可以参考:链接 1.写注释的方法 连续三个 \ 即…

uniapp---安卓真机调试提示检测不到手机【解决办法】

最近在做APP,由于华为手机更新过系统,再次用来调试APP发现就不行了。下面给出具体的解决方法: 第一步:打开【允许开发人员选项】 找到【设置】点击【关于手机】找到【版本号】点击7次或多次,允许开发人员选项。 第二…

首次引入大模型!Bert-vits2-Extra中文特化版40秒素材复刻巫师3叶奈法

Bert-vits2项目又更新了,更新了一个新的分支:中文特化,所谓中文特化,即针对中文音色的特殊优化版本,纯中文底模效果百尺竿头更进一步,同时首次引入了大模型,使用国产IDEA-CCNL/Erlangshen-Megat…

Python中的@abstractmethod

abstractmethod 是 Python 中 abc 模块(Abstract Base Classes)提供的一个装饰器,用于声明抽象方法。抽象方法是指在抽象类中声明但没有提供具体实现的方法,而是由其子类提供具体实现。 使用 abstractmethod 装饰器可以使得子类在…