代码随想录算法训练DAY22|二叉树8

算法训练DAY22|二叉树8

235. 二叉搜索树的最近公共祖先

力扣题目链接(opens new window)

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

235. 二叉搜索树的最近公共祖先

示例 1:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8

  • 输出: 6

  • 解释: 节点 2 和节点 8 的最近公共祖先是 6。

示例 2:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4

  • 输出: 2

  • 解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。

  • p、q 为不同节点且均存在于给定的二叉搜索树中。

思路

做过二叉树:公共祖先问题 (opens new window)题目的同学应该知道,利用回溯从底向上搜索,遇到一个节点的左子树里有p,右子树里有q,那么当前节点就是最近公共祖先。

那么本题是二叉搜索树,二叉搜索树是有序的,那得好好利用一下这个特点。

在有序树里,如果判断一个节点的左子树里有p,右子树里有q呢?

因为是有序树,所有 如果 中间节点是 q 和 p 的公共祖先,那么 中节点的数组 一定是在 [p, q]区间的。即 中节点 > p && 中节点 < q 或者 中节点 > q && 中节点 < p。

那么只要从上到下去遍历,遇到 cur节点是数值在[p, q]区间中则一定可以说明该节点cur就是p 和 q的公共祖先。 那问题来了,一定是最近公共祖先吗

如图,我们从根节点搜索,第一次遇到 cur节点是数值在[q, p]区间中,即 节点5,此时可以说明 q 和 p 一定分别存在于 节点 5的左子树,和右子树中。

235.二叉搜索树的最近公共祖先

此时节点5是不是最近公共祖先? 如果 从节点5继续向左遍历,那么将错过成为p的祖先, 如果从节点5继续向右遍历则错过成为q的祖先。

所以当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[q, p]区间中,那么cur就是 q和p的最近公共祖先。

理解这一点,本题就很好解了。

而递归遍历顺序,本题就不涉及到 前中后序了(这里没有中节点的处理逻辑,遍历顺序无所谓了)。

如图所示:p为节点6,q为节点9

235.二叉搜索树的最近公共祖先2

可以看出直接按照指定的方向,就可以找到节点8,为最近公共祖先,而且不需要遍历整棵树,找到结果直接返回!

#递归法

递归三部曲如下:

  • 确定递归函数返回值以及参数

参数就是当前节点,以及两个结点 p、q。

返回值是要返回最近公共祖先,所以是TreeNode * 。

代码如下:

TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q)
  • 确定终止条件

遇到空返回就可以了,代码如下:

if (cur == NULL) return cur;

其实都不需要这个终止条件,因为题目中说了p、q 为不同节点且均存在于给定的二叉搜索树中。也就是说一定会找到公共祖先的,所以并不存在遇到空的情况。

  • 确定单层递归的逻辑

在遍历二叉搜索树的时候就是寻找区间[p->val, q->val](注意这里是左闭又闭)

那么如果 cur->val 大于 p->val,同时 cur->val 大于q->val,那么就应该向左遍历(说明目标区间在左子树上)。

需要注意的是此时不知道p和q谁大,所以两个都要判断

代码如下:

if (cur->val > p->val && cur->val > q->val) {TreeNode* left = traversal(cur->left, p, q);if (left != NULL) {return left;}
}

细心的同学会发现,在这里调用递归函数的地方,把递归函数的返回值left,直接return

在二叉树:公共祖先问题 (opens new window)中,如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树。

搜索一条边的写法:

if (递归函数(root->left)) return ;
if (递归函数(root->right)) return ;

搜索整个树写法:

left = 递归函数(root->left);
right = 递归函数(root->right);
left与right的逻辑处理;

本题就是标准的搜索一条边的写法,遇到递归函数的返回值,如果不为空,立刻返回。

如果 cur->val 小于 p->val,同时 cur->val 小于 q->val,那么就应该向右遍历(目标区间在右子树)。

if (cur->val < p->val && cur->val < q->val) {TreeNode* right = traversal(cur->right, p, q);if (right != NULL) {return right;}
}

剩下的情况,就是cur节点在区间(p->val <= cur->val && cur->val <= q->val)或者 (q->val <= cur->val && cur->val <= p->val)中,那么cur就是最近公共祖先了,直接返回cur。

代码如下:

return cur;

那么整体递归代码如下:

class Solution {
private:TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q) {if (cur == NULL) return cur;// 中if (cur->val > p->val && cur->val > q->val) {   // 左TreeNode* left = traversal(cur->left, p, q);if (left != NULL) {return left;}}
​if (cur->val < p->val && cur->val < q->val) {   // 右TreeNode* right = traversal(cur->right, p, q);if (right != NULL) {return right;}}return cur;}
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {return traversal(root, p, q);}
};

精简后代码如下:

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root->val > p->val && root->val > q->val) {return lowestCommonAncestor(root->left, p, q);} else if (root->val < p->val && root->val < q->val) {return lowestCommonAncestor(root->right, p, q);} else return root;}
};

#迭代法

对于二叉搜索树的迭代法,大家应该在二叉树:二叉搜索树登场! (opens new window)就了解了。

利用其有序性,迭代的方式还是比较简单的,解题思路在递归中已经分析了。

迭代代码如下:

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {while(root) {if (root->val > p->val && root->val > q->val) {root = root->left;} else if (root->val < p->val && root->val < q->val) {root = root->right;} else return root;}return NULL;}
};

灵魂拷问:是不是又被简单的迭代法感动到痛哭流涕?

#总结

对于二叉搜索树的最近祖先问题,其实要比普通二叉树公共简单的多。

不用使用回溯,二叉搜索树自带方向性,可以方便的从上向下查找目标区间,遇到目标区间内的节点,直接返回。

最后给出了对应的迭代法,二叉搜索树的迭代法甚至比递归更容易理解,也是因为其有序性(自带方向性),按照目标区间找就行了。

701.二叉搜索树中的插入操作

力扣题目链接

给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。

701.二叉搜索树中的插入操作

提示:

  • 给定的树上的节点数介于 0 和 10^4 之间

  • 每个节点都有一个唯一整数值,取值范围从 0 到 10^8

  • -10^8 <= val <= 10^8

  • 新值和原始二叉搜索树中的任意节点值都不同

思路

这道题目其实是一道简单题目,但是题目中的提示:有多种有效的插入方式,还可以重构二叉搜索树,一下子吓退了不少人,瞬间感觉题目复杂了很多。

其实可以不考虑题目中提示所说的改变树的结构的插入方式。

如下演示视频中可以看出:只要按照二叉搜索树的规则去遍历,遇到空节点就插入节点就可以了。

701.二叉搜索树中的插入操作

例如插入元素10 ,需要找到末尾节点插入便可,一样的道理来插入元素15,插入元素0,插入元素6,需要调整二叉树的结构么? 并不需要。

只要遍历二叉搜索树,找到空节点 插入元素就可以了,那么这道题其实就简单了。

接下来就是遍历二叉搜索树的过程了。

#递归

递归三部曲:

  • 确定递归函数参数以及返回值

参数就是根节点指针,以及要插入元素,这里递归函数要不要有返回值呢?

可以有,也可以没有,但递归函数如果没有返回值的话,实现是比较麻烦的,下面也会给出其具体实现代码。

有返回值的话,可以利用返回值完成新加入的节点与其父节点的赋值操作。(下面会进一步解释)

递归函数的返回类型为节点类型TreeNode * 。

代码如下:

TreeNode* insertIntoBST(TreeNode* root, int val)
  • 确定终止条件

终止条件就是找到遍历的节点为null的时候,就是要插入节点的位置了,并把插入的节点返回。

代码如下:

if (root == NULL) {TreeNode* node = new TreeNode(val);return node;
}

这里把添加的节点返回给上一层,就完成了父子节点的赋值操作了,详细再往下看。

  • 确定单层递归的逻辑

此时要明确,需要遍历整棵树么?

别忘了这是搜索树,遍历整棵搜索树简直是对搜索树的侮辱。

搜索树是有方向了,可以根据插入元素的数值,决定递归方向。

代码如下:

if (root->val > val) root->left = insertIntoBST(root->left, val);
if (root->val < val) root->right = insertIntoBST(root->right, val);
return root;

到这里,大家应该能感受到,如何通过递归函数返回值完成了新加入节点的父子关系赋值操作了,下一层将加入节点返回,本层用root->left或者root->right将其接住

整体代码如下:

class Solution {
public:TreeNode* insertIntoBST(TreeNode* root, int val) {if (root == NULL) {TreeNode* node = new TreeNode(val);return node;}if (root->val > val) root->left = insertIntoBST(root->left, val);if (root->val < val) root->right = insertIntoBST(root->right, val);return root;}
};

可以看出代码并不复杂。

刚刚说了递归函数不用返回值也可以,找到插入的节点位置,直接让其父节点指向插入节点,结束递归,也是可以的。

那么递归函数定义如下:

TreeNode* parent; // 记录遍历节点的父节点
void traversal(TreeNode* cur, int val)

没有返回值,需要记录上一个节点(parent),遇到空节点了,就让parent左孩子或者右孩子指向新插入的节点。然后结束递归。

代码如下:

class Solution {
private:TreeNode* parent;void traversal(TreeNode* cur, int val) {if (cur == NULL) {TreeNode* node = new TreeNode(val);if (val > parent->val) parent->right = node;else parent->left = node;return;}parent = cur;if (cur->val > val) traversal(cur->left, val);if (cur->val < val) traversal(cur->right, val);return;}
​
public:TreeNode* insertIntoBST(TreeNode* root, int val) {parent = new TreeNode(0);if (root == NULL) {root = new TreeNode(val);}traversal(root, val);return root;}
};

可以看出还是麻烦一些的。

我之所以举这个例子,是想说明通过递归函数的返回值完成父子节点的赋值是可以带来便利的。

网上千篇一律的代码,可能会误导大家认为通过递归函数返回节点 这样的写法是天经地义,其实这里是有优化的!

#迭代

跳过

450.删除二叉搜索树中的节点

力扣题目链接

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 $O(h)$,h 为树的高度。

示例:

450.删除二叉搜索树中的节点

思路

搜索树的节点删除要比节点增加复杂的多,有很多情况需要考虑,做好心理准备。

#递归

递归三部曲:

  • 确定递归函数参数以及返回值

说到递归函数的返回值,在二叉树:搜索树中的插入操作 (opens new window)中通过递归返回值来加入新节点, 这里也可以通过递归返回值删除节点。

代码如下:

TreeNode* deleteNode(TreeNode* root, int key)

1

  • 确定终止条件

遇到空返回,其实这也说明没找到删除的节点,遍历到空节点直接返回了

if (root == nullptr) return root;

1

  • 确定单层递归的逻辑

这里就把二叉搜索树中删除节点遇到的情况都搞清楚。

有以下五种情况:

  • 第一种情况:没找到删除的节点,遍历到空节点直接返回了

  • 找到删除的节点

    • 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点

    • 第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点

    • 第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点

    • 第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

第五种情况有点难以理解,看下面动画:

450.删除二叉搜索树中的节点

动画中的二叉搜索树中,删除元素7, 那么删除节点(元素7)的左孩子就是5,删除节点(元素7)的右子树的最左面节点是元素8。

将删除节点(元素7)的左孩子放到删除节点(元素7)的右子树的最左面节点(元素8)的左孩子上,就是把5为根节点的子树移到了8的左孩子的位置。

要删除的节点(元素7)的右孩子(元素9)为新的根节点。.

这样就完成删除元素7的逻辑,最好动手画一个图,尝试删除一个节点试试。

代码如下:

if (root->val == key) {// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点if (root->left == nullptr) return root->right;// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点else if (root->right == nullptr) return root->left;// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置// 并返回删除节点右孩子为新的根节点。else {TreeNode* cur = root->right; // 找右子树最左面的节点while(cur->left != nullptr) {cur = cur->left;}cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置TreeNode* tmp = root;   // 把root节点保存一下,下面来删除root = root->right;     // 返回旧root的右孩子作为新rootdelete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)return root;}
}

这里相当于把新的节点返回给上一层,上一层就要用 root->left 或者 root->right接住,代码如下:

if (root->val > key) root->left = deleteNode(root->left, key);
if (root->val < key) root->right = deleteNode(root->right, key);
return root;

整体代码如下:(注释中:情况1,2,3,4,5和上面分析严格对应)

class Solution {
public:TreeNode* deleteNode(TreeNode* root, int key) {if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了if (root->val == key) {// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点if (root->left == nullptr && root->right == nullptr) {///! 内存释放delete root;return nullptr;}// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点else if (root->left == nullptr) {auto retNode = root->right;///! 内存释放delete root;return retNode;}// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点else if (root->right == nullptr) {auto retNode = root->left;///! 内存释放delete root;return retNode;}// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置// 并返回删除节点右孩子为新的根节点。else {TreeNode* cur = root->right; // 找右子树最左面的节点while(cur->left != nullptr) {cur = cur->left;}cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置TreeNode* tmp = root;   // 把root节点保存一下,下面来删除root = root->right;     // 返回旧root的右孩子作为新rootdelete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)return root;}}if (root->val > key) root->left = deleteNode(root->left, key);if (root->val < key) root->right = deleteNode(root->right, key);return root;}
};

普通二叉树的删除方式

这里我在介绍一种通用的删除,普通二叉树的删除方式(没有使用搜索树的特性,遍历整棵树),用交换值的操作来删除目标节点。

代码中目标节点(要删除的节点)被操作了两次:

  • 第一次是和目标节点的右子树最左面节点交换。

  • 第二次直接被NULL覆盖了。

思路有点绕,感兴趣的同学可以画图自己理解一下。

代码如下:(关键部分已经注释)

class Solution {
public:TreeNode* deleteNode(TreeNode* root, int key) {if (root == nullptr) return root;if (root->val == key) {if (root->right == nullptr) { // 这里第二次操作目标值:最终删除的作用return root->left;}TreeNode *cur = root->right;while (cur->left) {cur = cur->left;}swap(root->val, cur->val); // 这里第一次操作目标值:交换目标值其右子树最左面节点。}root->left = deleteNode(root->left, key);root->right = deleteNode(root->right, key);return root;}
};

这个代码是简短一些,思路也巧妙,但是不太好想,实操性不强,推荐第一种写法!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/601985.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PEFT: 在低资源硬件上对十亿规模模型进行参数高效微调

1 引言 最近&#xff0c;深度学习的研究中出现了许多大型预训练模型&#xff0c;例如 GPT-3、BERT 等&#xff0c;这些模型可以在多种自然语言处理任务中取得优异的性能表现。而其中&#xff0c;ChatGPT 模型因为在对话生成方面的表现而备受瞩目&#xff0c;成为了自然语言处理…

sublime text 3 分屏和关闭分屏

有时候需要编辑多个地方的代码&#xff0c;开多个编辑器又太麻烦&#xff0c;那么Sublime自带的分屏快捷键可以解决烦恼。 Altshift2 分为2列 Altshift3 分为3列 Altshift4 分为4列 Altshift5 分为2行2列 Altshift8 分为2行 Altshift9 分为3行 取消分屏&#xff1a;Alts…

基于多反应堆的高并发服务器【C/C++/Reactor】(中)创建一个TcpConnection实例 以及 接收客户端数据

#CSDN 年度征文&#xff5c;回顾 2023&#xff0c;赢专属铭牌等定制奖品# 一、主线程反应堆模型的事件添加和处理详解 >>服务器和客户端建立连接和通信流程&#xff1a; 基于多反应堆模型的服务器结构图&#xff0c;这主要是一个TcpServer&#xff0c;关于HttpServer,…

分布式协调系统

分布式协调系统 分布式协调系统解决的进程间的通信和协作&#xff0c;根据是否在同一时间和是否相互引用分为四个模型。 示例系统Chubby 主功能&#xff1a;让客户端实现同步&#xff0c;方法是加锁服务 介绍一下系统&#xff1a; 系统由五台服务器构成&#xff0c;通过pax…

智慧地球(AI•Earth)社区成立一周年啦!独家福利与惊喜彩蛋等你来拿!

原文&#xff1a;智慧地球&#xff08;AI•Earth&#xff09;社区成立一周年啦&#xff01; 智慧地球社区 一周年庆典&#x1f38a; 独家福利&#x1f381;与惊喜彩蛋&#x1f389;等你来拿&#xff01; 智慧地球&#xff08;AI•Earth&#xff09;社区自2023年1月11日建立以…

app store里面的构建版本在线上传

开发苹果ios应用&#xff0c;无论是用原生开发、用hbuilderx开发还是用其他h5框架开发的app&#xff0c;都需要将打包好的ipa文件上传到app store。 在上架app store的过程中&#xff0c;我们会遇到下图的这样一个问题&#xff1a; 就是它要求我们上传一个构建版本&#xff0c…

如何保障开放网络边界安全?

针对开放式网络&#xff08;办事大厅、视频网络等&#xff09;&#xff0c;如何在内部网络构建起一道安全屏障&#xff0c;有效解决广大用户普遍存在的无法保证网络边界完整、边界安全、公共场所终端摄像头管理、办事大厅智能设备&#xff08;一体机等&#xff09;管理、开放场…

【C语言】Linux实现高并发处理的过程

一、实现高并发的几种策略 C语言本身并没有内建的多线程支持&#xff08;新版C语言支持&#xff0c;但用得不多&#xff09;&#xff0c;但是在多数操作系统中&#xff0c;可以使用库来实现多线程编程。例如&#xff0c;在POSIX兼容系统上&#xff0c;可以使用 pthreads 库来创…

django学习:页面渲染与请求和响应

1.请求过程 2.页面渲染 在app中新建一个目录&#xff08;Directory&#xff09;&#xff0c;文件名命名为templates。该文件名命名是固定的&#xff0c;不可命名出错&#xff0c;如若后续步骤出错&#xff0c;该目录文件名是一个检查的重点项目。在该目录下新建一个html文件&a…

探讨一下WebINFO 下的一些思考

在平时的开发中&#xff0c;我们经常看到一个/WEB-INF 这个目录&#xff0c;这个是web 容器初始化加载的一个标准路径。官方解释&#xff1a;WEB-INF 是 Java 的 web 应用的安全目录。所谓安全就是客户端无法访问&#xff0c;只有服务端可以访问的目录。也就是说&#xff0c;这…

MySQL之视图内连接、外连接、子查询

一、视图 1.1 含义 虚拟表&#xff0c;和普通表一样使用 视图&#xff08;view&#xff09;是一个虚拟表&#xff0c;其内容由查询定义。同真实的表一样&#xff0c;视图包含一系列带有名称的列和行数据。但是&#xff0c;数据库中只存放了视图的定义&#xff0c;而并没有存放…

Jmeter二次开发实操问题汇总(JDK问题,jar包问题)

前提 之前写过一篇文章&#xff1a;https://qa-lsq.blog.csdn.net/article/details/119782694 只是简单尝试了一下生成一个随机手机号码。 但是如果在工作中一个实际场景要用的二次开发&#xff0c;可能会遇到一些问题。 比如这样一个场景&#xff1a; Mobile或者前端调用部分…

如何评判一款智能酒精壁炉品质是否优秀

在当今家居设计中&#xff0c;智能酒精壁炉作为一种独特的取暖和装饰方式&#xff0c;受到越来越多人的青睐。然而&#xff0c;如何挑选和选择优质的智能酒精壁炉成为了一个重要的话题&#xff0c;下面将深入探讨哪样的智能酒精壁炉才算得上是品质卓越。 优质的智能酒精壁炉通常…

Guarded Suspension模式--适合等待事件处理

Guarded是被守护、被保卫、被保护的意思&#xff0c; Suspension则是暂停的意思。 如果执行现在的处理会造成问题&#xff0c; 就让执行处理的线程进行等待--- 这就是Guarded Suspension模式。 模式通过让线程等待来保证实例的安全性。 一个线程ClientThread会将请求 Request的…

AWS EKS1.26+kubesphere3.4.1

1、前提准备 1台EC2服务器Amazon Linux2&#xff0c;设置admin的角色 安装 aws cli V2 ​ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"unzip awscliv2.zipsudo ./aws/installexport PATH/usr/local/bin:$PATHsou…

Multisim各版本安装指南

Multisim下载链接 https://pan.baidu.com/s/1En9uUKafhGOqo57V5rY9dA?pwd0531 1.鼠标右击【Multisim 14.3(64bit)】压缩包&#xff08;win11及以上统需先点击“显示更多选项”&#xff09;选择【解压到 Multisim 14.3(64bit)】。 2.打开解压后的文件夹&#xff0c;双击打开【…

目标检测 | YOLOv5 训练自标注数据集实现迁移学习

Hi&#xff0c;大家好&#xff0c;我是源于花海。本文主要了解 YOLOv5 训练自标注数据集&#xff08;自行车和摩托车两种图像&#xff09;进行目标检测&#xff0c;实现迁移学习。YOLOv5 是一个非常流行的图像识别框架&#xff0c;这里介绍一下使用 YOLOv5 给使用 Labelme 标注…

一文详解动态 Schema

在数据库中&#xff0c;Schema 常有&#xff0c;而动态 Schema 不常有。 例如&#xff0c;SQL 数据库有预定义的 Schema&#xff0c;但这些 Schema 通常都不能修改&#xff0c;用户只有在创建时才能定义 Schema。Schema 的作用是告诉数据库使用者所希望的表结构&#xff0c;确保…

网络安全红队常用的攻击方法及路径

一、信息收集 收集的内容包括目标系统的组织架构、IT资产、敏感信息泄露、供应商信息等各个方面&#xff0c;通过对收集的信息进行梳理&#xff0c;定位到安全薄弱点&#xff0c;从而实施下一步的攻击行为。 域名收集 1.备案查询 天眼查爱企查官方ICP备案查询 通过以上三个…

Java BIO、NIO、AIO、Netty知识详解(值得珍藏)

1. 什么是IO Java中I/O是以流为基础进行数据的输入输出的&#xff0c;所有数据被串行化(所谓串行化就是数据要按顺序进行输入输出)写入输出流。简单来说就是java通过io流方式和外部设备进行交互。 在Java类库中&#xff0c;IO部分的内容是很庞大的&#xff0c;因为它涉及的领…