推荐一本AI+医疗书:《机器学习和深度学习基础以及医学应用》,附21篇精选综述

当代医学仍然存在许多亟待解决的问题,比如日益增加的成本、医疗服务水平的下降...但近几年AI技术的发展却给医疗领域带来了革命性的变化,因此AI+医疗迅速兴起。

从目前已知的成果来看,人工智能在医学领域的应用已经相当广泛,智能诊断、影像识别、语音识别、预防性医学、AI辅助治疗等技术也为我们提供了更加便捷有效的医疗服务。可以看见,AI+医疗会是未来的研究热门与市场指向之一。

既然都是热门了,作为人工智能领域的我们怎么能错过这个好发论文的方向?所以我今天就来和同学们分享AI+医疗领域的资源包了。

这次不仅是整理了21篇AI医疗必读的论文综述,我还发现了一本宝藏书籍。

《机器学习和深度学习在医学中的基础知识》

这本书是由三位大佬联合撰写,为医学学生、研究人员和专业人员提供了机器学习和医学深度学习的基础介绍,只需在本科阶段选修过一门数学入门课程(比如微积分)就可以轻松的读懂!

本书涉及医学数据的数学编码、线性回归和分类、非线性特征工程、深度学习、卷积和循环神经网络、强化学习等知识。每一章以练习集结束,供读者练习和测试所学。

需要全书pdf的同学看文末

21篇必读论文综述

整理的论综述涉及医学图像配准、医学图像分割、迁移学习和多模态融合等细分领域,分享出来主要就是为了帮助大家快速了解AI+医疗的研究现状与方向。

1、A Comprehensive Review of Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis (病理图像分析中MRF和CRF方法综述

2、Medical Instrument Detection in Ultrasound: A Review (超声引导治疗的医疗器械检测

3、Multiple Sclerosis Lesion Segmentation - A Survey of Supervised CNN-Based Methods (多发性硬化病变分割--基于有监督CNN的方法综述

4、A review: Deep learning for medical image segmentation using multi-modality fusion(多模态融合用于医学图像分割的深度学习综述

5、High-level Prior-based Loss Functions for Medical Image Segmentation: A Survey (基于高层先验损失函数的医学图像分割综述

6、Deep Learning Based Brain Tumor Segmentation: A Survey(基于深度学习的脑肿瘤分割研究综述

7、Medical Image Segmentation Using Deep Learning: A Survey(基于深度学习的医学图像分割研究综述

8、A Survey on Deep Learning for Neuroimaging-based Brain Disorder Analysis (基于神经成像的脑疾病分析深度学习研究综述

9、A Survey on Deep Learning and Explainability for Automatic Report Generation from Medical Images(基于图像的医学报告自动生成的深度学习和可解释性研究综述

10、Learning-Based Algorithms for Vessel Tracking: A Review(基于学习的血管跟踪算法综述

11、Deep Learning in Computer-Aided Diagnosis and Treatment of Tumors: A Survey(计算机辅助肿瘤诊疗中的深度学习研究综述

12、A scoping review of transfer learning research on medical image analysis using ImageNet(利用ImageNet进行医学图像分析的迁移学习研究述评

13、Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans(利用胸片和CT扫描进行冠状病毒检测和预测的机器学习:一项系统方法学综述

14、Towards Automatic Threat Detection: A Survey of Advances of Deep Learning within X-ray Security Imaging (迈向自动威胁检测:X射线安全成像中深度学习进展综述

15、A Review on End-To-End Methods for Brain Tumor Segmentation and Overall Survival Prediction(脑肿瘤的端到端分割和总体生存预测方法综述

16、A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks (使用经典和深层神经网络进行的乳房组织病理学图像分析的全面综述

17、Medical Image Registration Using Deep Neural Networks: A Comprehensive Review(使用深度神经网络的医学图像配准:全面综述

18、3D Bounding Box Detection in Volumetric Medical Image Data: A Systematic Literature Review(体医学图像数据中三维包围盒检测的系统文献综述

19、A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19) (新型冠状病毒(冠状病毒)诊断的深度学习技术综述

20、Deep neural network models for computational histopathology: A survey(用于计算组织病理学的深度神经网络模型综述

21、A Survey on Incorporating Domain Knowledge into Deep Learning for Medical Image Analysis (域知识驱动的医学图像深度学习研究综述

关注下方《学姐带你玩AI》🚀🚀🚀

回复“AI医疗”获取全部论文+书籍pdf

码字不易,欢迎大家点赞评论收藏!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/60063.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT在创新和创业中的应用如何?

ChatGPT是一种基于大规模预训练的语言模型,它在创新和创业中有着广泛的应用。作为一种具备自然语言处理能力的模型,ChatGPT可以与用户进行对话,并提供相关的信息、建议和创意。以下是ChatGPT在创新和创业中的一些应用: 创意生成和…

ChatGPT⼊门到精通(7):GPT3.5与 4.0区别

⼀、详细区别 1 项⽬ GPT3.5 GPT4.0 2 打字速度 较慢,⾼峰期更慢 更加慢,差别不⼤ 3 掉线⼏率 经常掉线 很少掉线 4 分段能⼒ ⽣成⼏百字后就停⽌了, 需要回复“继续”,有时候不 是很连贯 基本连贯 5 使⽤限制 1⼩时100次提问&am…

创建python环境——Anaconda

在Windows中安装Anaconda和简单使用 一.Anaconda发行概述 Anaconda是一个可以便捷获取和管理包,同时对环境进行统一管理的发行版本,它包含了conda、 Python在内的超过180个科学包及其依赖项。 1.Anaconda发行版本具有以下特点: (1)包含了…

统一使用某一个包管理工具,比如yarn pnpm

原因:前端每个人的习性不一样,有人用npm 有人用yarn等包管理工具,混合下载插件容易出bug,就用个小工具锁住就行了,只能使用yarn或者pnpm反向下载依赖和下载插件。不然就报错 1.在项目主目录下创建preinstall.js // 如…

Linux命令查看CPU、内存、IO使用情况简单介绍

文章目录 1. CPU相关介绍1.1 物理CPU1.2 物理CPU内核1.3 逻辑CPU1.4 几核几线程1.5 CPU设计图 2. top 查看系统负载、CPU使用情况2.1 系统整体的统计信息2.2 进程信息2.3 top命令使用 3. lscpu 显示有关 CPU 架构的信息4. free 查看内存信息5. iostat 查看io信息 1. CPU相关介绍…

Linux知识点 -- Linux多线程(三)

Linux知识点 – Linux多线程(三) 文章目录 Linux知识点 -- Linux多线程(三)一、线程同步1.概念理解2.条件变量3.使用条件变量进行线程同步 二、生产者消费者模型1.概念2.基于BlockingQueue的生产者消费者模型3.单生产者单消费者模…

MariaDB数据库服务器

目录 一、什么是数据库? 二、什么是关系型数据库? 三、数据库字符集和排序规则是什么? 四、常用数据类型 五、Mariadb数据库相关配置案例 一、什么是数据库? 数据库(DB)是以一定方式长期存储在计算机硬盘内…

Android OTA 相关工具(六) 使用 lpmake 打包生成 super.img

我在 《Android 动态分区详解(二) 核心模块和相关工具介绍》 介绍过 lpmake 工具,这款工具用于将多个分区镜像打包生成一个 Android 专用的动态分区镜像,一般称为 super.img。Android 编译时,系统会自动调用 lpmake 并传入相关参数来生成 sup…

(第六天)初识Spring框架-SSM框架的学习与应用(Spring + Spring MVC + MyBatis)-Java EE企业级应用开发学习记录

SSM框架的学习与应用(Spring Spring MVC MyBatis)-Java EE企业级应用开发学习记录(第六天)初识Spring框架 ​ 昨天我们已经把Mybatis框架的基本知识全部学完,内容有Mybatis是一个半自动化的持久层ORM框架,深入学习编写动态SQL&a…

Android11系统屏蔽禁用桌面上拉手势功能

做定制项目时,会遇到客户提出屏蔽禁用桌面上拉手势功能的需求,上拉手势功能分横屏和竖屏,具体修改如下: diff --git a/quickstep/recents_ui_overrides/src/com/android/launcher3/uioverrides/touchcontrollers/OverviewToAllAp…

Vector<T> 动态数组(模板语法)

C数据结构与算法 目录 本文前驱课程 1 C自学精简教程 目录(必读) 2 动态数组 Vector(难度1) 其中,2 是 1 中的一个作业。2 中详细讲解了动态数组实现的基本原理。 本文目标 1 学会写基本的C类模板语法; 2 为以后熟练使用 S…

css实现垂直上下布局的两种常用方法

例子&#xff1a;将两个<span>元素在<div>内垂直居中放置. 方法一&#xff1a;使用 Flexbox 来实现。 在下面的示例中&#xff0c;我将为 <div> 元素添加样式&#xff0c;使其成为一个 Flex 容器&#xff0c;并使用 Flexbox 属性将其中的两个 <span>…

解决 vue项目报错:digital envelope routines::unsupported

出现这个错误是因为 node.js V17版本中最近发布的OpenSSL3.0, 而OpenSSL3.0对允许算法和密钥大小增加了严格的限制&#xff0c;可能会对生态系统造成一些影响. 方法1&#xff1a;运行前$ npm run serve前 先运行 export NODE_OPTIONS--openssl-legacy-provider 方法2&#xf…

org.springframework.web.reactive.function.server.ServerResponse设置响应头

记录一下 String host serverRequest.uri().getHost();Consumer<HttpHeaders> headersConsumer consumer -> {consumer.setAccessControlAllowOrigin(host);consumer.setAccessControlAllowCredentials(true);consumer.set("Access-Control-Allow-Headers"…

mysql排名函数row_number()over(order by)和with * as 的用法

601. 体育馆的人流量(力扣mysql题,难度:困难) 表&#xff1a;Stadium ------------------------ | Column Name | Type | ------------------------ | id | int | | visit_date | date | | people | int | ------------------------vis…

基于Java的代驾管理系统 springboot+vue,mysql数据库,前台用户、商户+后台管理员,有一万五千字报告,完美运行

基于Java的代驾管理系统 springbootvue&#xff0c;mysql数据库&#xff0c;前台用户、商户后台管理员&#xff0c;有一万五千字报告&#xff0c;完美运行。 系统完美实现用户下单叫车、商户接单、管理员管理系统&#xff0c;页面良好&#xff0c;系统流畅。 各角色功能&#x…

k8s的service mesh功能有那些

Kubernetes&#xff08;K8s&#xff09;的服务网格&#xff08;Service Mesh&#xff09;是一种用于管理微服务架构中服务通信、安全性、可观察性等方面的工具集合。服务网格通过将网络和安全功能从应用程序代码中分离出来&#xff0c;帮助简化了微服务的部署和管理。以下是一些…

【CicadaPlayer】getPlayerBufferDuration分析

https://github.com/alibaba/CicadaPlayer/blob/release/0.4.4/mediaPlayer/SuperMediaPlayer.cpp核心关键函数int64_t SuperMediaPlayer::getPlayerBufferDuration(bool gotMax, bool internal)17个地方出现: getPlayerBufferDuration的durations 数组 分别 对音频、视频、字…

利用R作圆环条形图

从理念上看&#xff0c;本质就是增加了圆环弧度的条形图。如上图2。 需要以下步骤&#xff1a; 数据处理&#xff0c;将EXCEL中的数据做成3*N的表格导入系统&#xff0c;代码如下&#xff1a;library(tidyverse) library(stringr)library(ggplot2)library(viridis) stuper &…

UDP 多播(组播)

前言&#xff08;了解分类的IP地址&#xff09; 1.组播&#xff08;多播&#xff09; 单播地址标识单个IP接口&#xff0c;广播地址标识某个子网的所有IP接口&#xff0c;多播地址标识一组IP接口。单播和广播是寻址方案的两个极端&#xff08;要么单个要么全部&#xff09;&am…