C-浮点数类型表示

文章目录

尽管最近有些小小的迷茫,但是刷题不能马虎啊!最近在做790. 数的三次方根1,所以回顾一下C语言中是如何表示浮点数类型的。

以下是ChatGPT的回复:

  1. Elaborate on floating point types in C, such as tails and exponents? (详细说明 C 语言中的浮点类型,如尾数和指数?)

In C, floating point types are used to represent real numbers (numbers with fractional parts) and are typically implemented following the IEEE 754 standard. The most common floating point types in C are float, double, and long double. These types differ in their precision and range, which is a result of how they represent a number using three components: the sign bit, the exponent, and the mantissa (or significand).
Components of a Floating Point Number in IEEE 754
Sign Bit:
This is a single bit representing the sign of the number.
0 indicates a positive number, and 1 indicates a negative number.
Exponent:
The exponent is used to represent the scale (or magnitude) of the number.
It is stored in “biased” form, meaning that a fixed bias is added to the actual exponent value to get a non-negative value stored in the exponent field. This bias is 2 ( n − 1 ) − 1 2^{(n-1)} - 1 2(n1)1, where n n n is the number of bits in the exponent.
For example, in a 32-bit float, 8 bits are used for the exponent, and the bias is 127 = 2 7 − 1 2^7 - 1 271.
Mantissa (Significand):
The mantissa represents the precision bits of the number. It’s the fractional part of the number, normalized such that its range is just below 1 to just less than 2 (in binary, this means it starts with 1.).
However, the leading 1 is implicit and usually not stored (known as the “hidden bit” assumption). This is due to the fact that normalized numbers always start with 1, and hence it can be omitted to save storage space.
The remaining part of the mantissa is what is actually stored and represents the fraction.
Floating Point Types in C
float:
Typically 32 bits: 1 bit for sign, 8 bits for exponent, and 23 bits for mantissa.
Precision of about 6-7 decimal digits.
double:
Typically 64 bits: 1 bit for sign, 11 bits for exponent, and 52 bits for mantissa.
Precision of about 15-16 decimal digits.
long double:
Size and precision can vary depending on the system and compiler, but it is at least as large as double.
Often 80 or 128 bits on many systems, with varying distribution among sign, exponent, and mantissa.
Considerations
Floating point numbers can represent a very wide range of values, but they do so with limited precision. Operations on floating point numbers can introduce rounding errors.
Special values are represented in IEEE 754, such as Infinity (positive and negative) and NaN (Not a Number), which result from operations that have undefined or unrepresentable results in real numbers.
Due to their inexact nature, floating point numbers should not be used where exact results are required, such as in monetary calculations.

  1. Regarding Exponent and Mantissa, I don’t really understand them, can you give me some examples to get me up to speed with floating point types in C?

Let’s break down how a floating-point number is represented using the IEEE 754 standard, which is commonly used in C for the float and double types.
Floating Point Representation
A floating-point number is typically represented in three parts:
Sign Bit: Indicates whether the number is positive or negative.
Exponent: Determines the scale of the number.
Mantissa (or Significand): Represents the precision of the number.

The IEEE 754 Standard for float
Let’s consider a 32-bit float in IEEE 754 standard:
1 bit for the sign (S).
8 bits for the exponent (E).
23 bits for the mantissa (M).
The actual value represented by this float is:
( − 1 ) S × 1. M × 2 ( E − b i a s ) (−1)^S ×1.M×2^{(E−bias)} (1)S×1.M×2(Ebias)
The bias for a 32-bit float is 127.
Example
Let’s take a float number, say 5.75, and see how it is represented:
Convert to Binary:
The integer part, 5, is 101 in binary.
The fractional part, .75, is .11 in binary (since 0.5 + 0.25 = 0.75).
So, 5.75 in binary is 101.11.
Normalize the Binary Number:
Write it in a form such that there’s only one non-zero digit before the decimal point. For 101.11, it is 1.0111 × 2^2.
Here, 1.0111 is the mantissa, and 2 is the exponent.
Encode the Exponent:
Add the bias (127 for 32-bit float) to the exponent. So, 2 + 127 = 129.
The binary form of 129 is 10000001.
Encode the Mantissa:
Drop the leading 1 (since it’s implicit) and consider only the fractional part .0111.
If necessary, pad it to the right with zeros to make it 23 bits long.
Sign Bit:
For a positive number, the sign bit is 0.
So, 5.75 in IEEE 754 32-bit floating-point format is:
Sign bit: 0
Exponent: 10000001 (129 in binary)
Mantissa: 01110000000000000000000 (fractional part .0111, padded with zeros)
Combining these: 0 10000001 01110000000000000000000.

Precision and Rounding
In the conversion process, if the mantissa has more significant digits than can be represented (i.e., more than 23 bits for a float), it is rounded (如果尾数的有效位数多于可表示的位数(即浮点数多于 23 位),则四舍五入). This rounding can introduce small errors, which is an inherent limitation of floating-point arithmetic.
Conclusion
Understanding floating-point representation involves converting a decimal number into binary, normalizing it, adjusting the exponent with a bias, and fitting the mantissa within the allowed bit length. It’s a process that balances the range of representable numbers with precision, and it’s fundamental to how computers handle real numbers. (这是一个平衡可表示数范围和精度的过程,也是计算机处理实数的基础。)

  1. How are zeros represented in floating point types? (浮点类型中如何表示零?)

In floating-point representation, particularly following the IEEE 754 standard, zeros are represented in a special way to distinguish them from other numbers. Both positive zero and negative zero have their own representations. Both positive and negative zeros are represented with all exponent and mantissa bits set to 0, but they differ in their sign bit. This distinction allows floating-point systems to handle certain edge cases and mathematical nuances more accurately.

  1. How do I use mantissa and exponential representation, or scientific representation, if I use floating point types in C programming? (如果在 C 语言编程中使用浮点类型,如何使用尾数和指数表示法或科学表示法?)

In C programming, when dealing with floating point types (float, double, and long double), you don’t directly manipulate the mantissa and exponent parts as they are internally handled by the floating-point representation (IEEE 754 standard, for most systems). However, you can work with numbers in a way that is conceptually similar to scientific notation, and you can also format floating-point output to reflect this.
Conceptual Use in Calculations
When you write a floating-point number in C, you can use scientific notation (also known as exponential notation) for clarity or convenience, especially for very large or very small numbers. For example:

double a = 1.23e5;  // Equivalent to 123000
double b = 4.56e-3; // Equivalent to 0.00456

Here, 1.23 e 5 1.23e5 1.23e5 is shorthand for 1.23 × 1 0 5 1.23×10^5 1.23×105, and 4.56 e − 3 4.56e-3 4.56e3 is shorthand for 4.56 × 1 0 − 3 4.56×10^{-3} 4.56×103.
Formatting Output
When printing floating-point numbers, you can use format specifiers in functions like printf to display numbers in scientific notation:

printf("%e\n", a); // Output in scientific notation
printf("%f\n", b); // Output in fixed-point notation

The %e format specifier will display the number in scientific notation, while %f will display it in fixed-point notation.


  1. 1: https://www.acwing.com/problem/content/792/ ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/599811.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT上位机开发(网络程序界面开发)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 传统的上位机对接方式还是以232、485、can为主,随着网络的发展,越来越多的设备都是以网络进行通信的。毕竟相比较之前&…

java练习题之List(ArrayList)集合练习

List集合 习题: 1:完成以下填空: List 接口的特点是元素 有序 (有|无)顺序, 可重复 (可以|不可以)重复; 2:(List)关于List 集合描述正确的是(…

python的getattr和getattribute调用

1 python的getattr和getattribute调用 python类的属性包括类属性、实例属性, 类属性:直接在类顶层赋值,或通过类名.属性名值赋值; 实例属性:通过self赋值,或通过实例名.属性名值赋值; 类实例…

肠道炎症与年龄和阿尔茨海默病病理学相关:一项人类队列研究

谷禾健康 ​阿尔茨海默 研究表明,慢性低水平的炎症(“炎症衰老”)可能是年龄相关疾病的一个介导因素,而肠道微生物通过破坏肠道屏障可能会促进炎症。 虽然老化和阿尔茨海默病(AD)与肠道微生物群组成的改变有…

Mybatis缓存实现方式

文章目录 装饰器模式Cache 接口及核心实现Cache 接口装饰器1. BlockingCache2. FifoCache3. LruCache4. SoftCache5. WeakCache 小结 缓存是优化数据库性能的常用手段之一,我们在实践中经常使用的是 Memcached、Redis 等外部缓存组件,很多持久化框架提供…

SQLAlchemy快速入门

安装依赖 pip install sqlalchemy pip install pymysql创建数据库和表 # 创建数据库 drop database if exists sqlalchemy_demo; create database sqlalchemy_demo character set utf8mb4; use sqlalchemy_demo;# 创建表 drop table if exists user; create table user (id …

ClickHouse基础介绍

目录 前言 1、什么是clickhouse 2、OLAP场景的关键特征 3、列式存储更适合于OLAP场景的原因 4、clickhouse的独特功能 5、clickhouse的缺点 6、性能 6.1、单个大查询的吞吐量 6.2、处理短查询的延迟时间 6.3、处理大量短查询的吞吐量 6.4、数据的写入性能 前言 11月…

Keras实现seq2seq

概述 Seq2Seq是一种深度学习模型,主要用于处理序列到序列的转换问题,如机器翻译、对话生成等。该模型主要由两个循环神经网络(RNN)组成,一个是编码器(Encoder),另一个是解码器…

C++——list容器放入赋值,交换与大小操作

1. list 赋值和交换 功能描述: 给list容器进行赋值,以及交换list容器 函数原型: 1.assign(beg, end); //将[beg, end)区间中的数据拷贝赋值给本身 2.assign(n, elem); //将n个elem拷贝赋值给本身 3.list& operator(const list &lst);//重载等…

Dart调用JS对10000条定位数据滤波

使用Dart调用JS,还是为了练习跨语言调用; 一、编写对应的JS代码 平时在开发时不推荐将算法放在JS里,我这里是简单的做一下数据过滤; 首先生成一些随机定位数据,在实际开发中可以使用真实数据; // 随机定…

git 常用命令 提交commit

提交一个commit git status test.txt 查看 指定文件test.txt 的状态 git add test.txt 添加 指定文件test.txt 到暂存区 git commit test.txt -m "commit msg" 提交 指定文件test.txtgit status …

汽车信息安全--芯片厂、OEM安全启动汇总(1)

目录 1.芯驰E3安全启动 2.STM32 X-CUBE-SBSFU 3.小米澎湃OS安全启动 4.小结 我在前篇文章里详细记录了车规MCU信息安全设计过程关于网络安全架构的思考过程,从芯片原厂、供应商、OEM等角度思考如何建立起完备的信任链; 不过这思考过程仅仅只是一家之言,因此我又对比了国…

vmware虚拟机安装esxi7.0步骤

一、安装准备 1、下载镜像文件 下载链接:https://pan.baidu.com/s/12XmWBCI1zgbpN4lewqYw6g 提取码:mdtx 2、vmware新建一个虚拟机 2.1 选择自定义 2.2 选择ESXi对应版本 2.3 选择稍后安装操作系统 2.4 默认选择 2.5 自定义虚拟机名称及存储位置 2…

forEach方法跳出循环

在for循环中,跳出循环有两种模式: break、continue;但是在forEach中,使用break或者continue都会报错;使用return在forEach不起作用,循环会继续执行,貌似充当了continue的角色。 forEach方法的机…

MyBatis学习二:Mapper代理开发、配置文件完成增删改查、注解开发

前言 公司要求没办法,前端也要了解一下后端知识,这里记录一下自己的学习 学习教程:黑马mybatis教程全套视频教程,2天Mybatis框架从入门到精通 文档: https://mybatis.net.cn/index.html Mapper代理开发 目的 解决…

Jenkins分布式实现: 构建弹性和可扩展的CI/CD环境!

Jenkins是一个流行的开源持续集成(Continuous Integration,CI)和持续交付(Continuous Delivery,CD)工具,它通过自动化构建、测试和部署过程,帮助开发团队更高效地交付软件。Jenkins的…

element ui弹窗在别的弹窗下方,优先级不高的问题

在弹窗的标签中加入append-to-body即可解决该问题&#xff1b; <el-dialog:title"title":visible.sync"dialogVisible"width"60%":before-close"handleClose":close-on-click-modal"false"append-to-body > </el-…

Oracle sid和service_name(服务名)地址写法不同

文章目录 场景总结 场景 项目需要切换数据库&#xff0c;批量改完配置文件后发现怎么有的地址前有//&#xff0c;有的没有 &#xff0c;是不是哪里改错了 。 后来确认了下。 带// 的是使用service_name连接的方式&#xff0c;是没有错的。 1.使用service_name,配置方式&#…

a标签锚点链接 + 遇到的问题

目录 需求背景实现思路遇到的问题问题解决关于锚点链接其他问题 需求背景 页面左侧是一级、二级标题&#xff0c;页面右侧是一级、二级标题对应的内容点击左侧标题&#xff0c;锚点链接&#xff0c;右侧内容跳转到左侧标题对应的内容区域 实现思路 通过 a 标签 id 的方法实现…

嵌入式Linux之Ubuntu学习笔记(Makefile规则格式)

Makefile里面是由一系列的规则组成的&#xff0c;这些规则格式如下&#xff1a; 目标&#xff1a;依赖文件集合 命令1 命令2 …… 列&#xff1a; main&#xff1a;main.o input.o calcu.o gcc -o main main.o input.o calcu.o 命令列表中的每条命令必须以TAB键开始&am…