软件设计模式 --- 类,对象和工厂模式的引入

Q1:什么是软件设计模式?

A:软件设计模式,又称设计模式。它是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性、程序的重用性。综上:设计模式就是泛指一系列编程的思想,是代码设计经验的总结,基于设计模式来开发代码可以使得程序更加稳定,拓展性更强。

Q2:为什么要学习设计模式?

A:在以往的项目开发中,不管是 ftp服务器 还是 图像识别智能垃圾桶 又或者更之前的智能小车项目,都没有一个固定的代码开发格式,更多的是根据需求一个个实现功能,虽然有了分文件编程的思想,但是代码整体还是缺乏规整度。尤其是在开发过程中,一个功能的实现经常会导致其他功能出现问题,所以需要学习设计模式,使得代码更加健壮和格式化。

Q3:算法 VS 设计模式?

A: 注意,算法不是设计模式,因为算法是使用逻辑来解决某些特定的问题,其致力于解决问题而非设计问题


设计模式的分类

软件设计模式共有23种,总体来说可以被分为三大类:

  • 五种创建型模式:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式
  • 七种结构型模式:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式
  • 十一种行为型模式:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式

而我接下来着重学习的是创建型模式中的“工厂(方法)模式”

类 & 对象

设计模式通常描述了一组相互紧密作用的类与对象:

小插曲:

类和对象其实在java中是一个更常见的概念(这也是为什么java被称为“面向对象”的语言),但是“类和对象”在设计模式中也被提到。值得注意的是,设计模式可以使用C语言来实现,所以C语言也可以实现”面向对象“的编程,但是相比java来说可能没那么直接,所以C语言还是被笼统的称为“面向过程”的语言,这不代表C语言就完全无法“面向对象”。

  • 类:是一种用户自定义的引用数据类型,也称类类型 --> C语言的结构体的定义
struct student{int age;float score; //成员属性void (*s_slogan)(); //成员方法
};
  • 对象:类的一种具象 --> C语言结构体类型的变量
struct student MJM;
struct student MMJ; //MJM,MMJ就是对象

 结构体对象定义的补充

C语言的结构体, 共用体(联合体)_一个结构体里有两个共用体-CSDN博客

在以前学习结构体的博文中,介绍了几种常见结构体对象的定义方法:

现在,假设有一个结构体:

struct student{int age;float score; //成员属性void (*s_slogan)(); //成员方法
};

而我现在想要定义一个名为“stu1”的该结构体对象,并且我只想对其的“score”和“s_slogan”赋值而不管其他两个成员,那么就可以使用如下的定义方法:

struct student stu1 = {.score = 67.5, //注意,是逗号.s_slogan = stu1_slogan, //最后一项的逗号可加可不加
};

oop_test.c:

#include <stdio.h>struct student{int age;float score; //成员属性void (*s_slogan)(); //成员方法
};void stu1_slogan()
{printf("stu1: I will be no.1!\n");
}void stu2_slogan()
{printf("stu2: I want to make my parent proud!\n");
}int main(){struct student stu1 = {.score = 97.5,.s_slogan = stu1_slogan, //函数名等于其地址,所以此处是地址的赋值};struct student stu2 = {.score = 87,.s_slogan = stu2_slogan,};printf("score of stu1:%f\n",stu1.score);stu1.s_slogan();printf("score of stu2:%f\n",stu2.score);stu2.s_slogan();return 0;
}

实现效果:

工厂模式

工厂模式(Factory Pattern)是Java中最常见的设计模式之一,也可以使用C来实现。刚刚就提到过,这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方法。

在工厂模式中,我们在创建对象时不会对客户端暴露创建逻辑,并且是通过使用一个共同的接口来指向新创建的对象。

使用SourceInsight编写代码


之前学习的使用SourceInsight查看源码的博文:

香橙派配合IIC驱动OLED & 使用SourceInsight解读源码_香橙派5 驱动屏幕-CSDN博客


学到现在,其实已经接触过多种编写代码的方式:

  • 使用windows的Notepad++来编写:界面简单,但是缺乏和linux的交互
  • 使用linux的vi来编写:最简单的一种,适合linux开发,但是vi界面并不友好
  • 使用VS Code远程连接linux编程:界面友好,适合linux开发,但是对单片机内存占用较大

现在,尝试使用SourceInsight来编写代码!

  • 使用SourceInsight来编写:适合多文件编程,界面友好,且编写完成后可以方便的查看跳转,但是缺乏和linux的交互

工厂模式的代码涉及大量 分文件编程 的思路,故可以使用SourceInsight来编写代码。但也如上所说,SourceInsight缺乏和linux的交互,所以在代码编写完成后需要发送到单片机进行编译和运行。


但是,这不代表必须要使用SourceInsight来编写分文件编程的代码,任何能编写C语言的工具理论上都可以使用,我也完全可以使用以前使用的任何一种方法来编写代码,只不过现在作为学习阶段目的是多接触一些不同的方式;并且SourceInsight也适合进行多文件的编程,仅此而已。

 在windows下新建一个“factory_test”文件夹用于保存测试代码:

 然后创建一个在“factory_test”下创建一个“stu1.c”:

然后打开SourceInsight,先点击左上方 Project -> Close Project来关闭之前打开的项目

然后点击左上方 File -> Open -> 选择要编写的代码,此处选择stu1.c

然后,就可以开始编写代码了,同样的步骤,可以使用SourceInsight打开stu2.c; stu3.c; stu.h; main.c

 (可见,SourceInsight的界面就很适合多个C文件的同时编辑

stu1.c:

#include "stu.h"void stu1_slogan()
{printf("stu1: I will be no.1!\n");
}struct student stu1 = {.name = "stu1",.score = 97.5,.s_slogan = stu1_slogan, //函数名等于其地址,所以此处是地址的赋值
};struct student* putS1inLink(struct student *head)
{struct student *p = head;        	if(p == NULL){head = &stu1;}else{stu1.next = head;head = &stu1;}return head;
}

stu2.c:

#include "stu.h"void stu2_slogan()
{printf("stu2: I want to make my parent proud!\n");
}struct student stu2 = {.name = "stu2",.score = 87.5,.s_slogan = stu2_slogan, //函数名等于其地址,所以此处是地址的赋值
};struct student* putS2inLink(struct student *head)
{struct student *p = head;        	if(p == NULL){head = &stu2;}else{stu2.next = head;head = &stu2;}return head;}

stu3.c:

#include "stu.h"void stu3_slogan()
{printf("stu3: I want to be a PC-game master!\n");
}struct student stu3 = {.name = "stu3",.score = 57.5,.s_slogan = stu3_slogan, //函数名等于其地址,所以此处是地址的赋值
};struct student* putS3inLink(struct student *head)
{struct student *p = head;        	if(p == NULL){head = &stu3;}else{stu3.next = head;head = &stu3;}return head;}

stu.h:

#include <stdio.h>struct student{char* name;int age;float score; //成员属性void (*s_slogan)(); //成员方法struct student *next; //链表
};struct student* putS1inLink();
struct student* putS2inLink();
struct student* putS3inLink();

main.c:

#include "stu.h"
#include <string.h>struct student* findSTUinLink(char *name, struct student *phead)
{struct student *p = phead;while(p != NULL){if(strcmp(p->name,name)==0){return p;}p = p->next;}return NULL;
}int main()
{struct student *phead = NULL;struct student *pfind = NULL;char name[64] = {'\0'};phead = putS1inLink(phead);phead = putS2inLink(phead);phead = putS3inLink(phead);if(phead == NULL){printf("Link Insert Error!\n");return 1;}while(1){printf("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n");printf("who do you want to look up?\n (pls insert 'stu1' OR 'stu2' OR 'stu3')\n");scanf("%s",name);if(strcmp(name,"stu1")==0 ||strcmp(name,"stu2")==0 || strcmp(name,"stu3")==0){pfind = findSTUinLink(name,phead);if(pfind != NULL){printf("name:%s;score:%f\n",pfind->name,pfind->score);pfind->s_slogan();}else{printf("can't find in link!\n");}}else{printf("unknown cmd!\n");}memset(name,'\0',strlen(name));}return 0;
}

在代码都编写好之后,可以全部关闭,在“factory_test”文件夹中创建一个“si”文件夹用于保存SourceInsight工程:

然后回到SourceInsight点击左上角的Project -> New Project,并选择刚刚的“si”文件夹:

然后点击两次OK,直到出现这个界面:

点击上一级的“factory_test” -> “Add All”/“Add Tree”:

最后再次点击左上角的Project -> Synchronize Files 来同步一下:

现在之前写的代码就集合成了一个工程的形式可以在SourceInsight中查看了(按住CTRL点击函数名就可以进行跳转)

并且,此时也可以继续修改代码

代码的编译和运行

现在,将“factory_test”文件夹中的代码全部发送给树莓派:

然后运行以下指令编译并运行:

1. gcc *.c -o fac
2. ./fac

 

 可见,代码运行成功!


综上,这就是一个典型的工厂模式代码设计。对于“main.c”,相比于整体其代码量并不多,且不会向用户暴露创建逻辑。 

  • 结构体“student”就是一个“工厂”,是一个类;stu1,2,3作为对象以链表的形式存在在“工厂”中。
  • main函数需要做的就是将“工厂”中的“模块”组装起来,然后想用哪个就去找到哪个就可以。

从上面的代码结构不难看出,使用工厂模式使得代码更稳定且拓展性更强,如果需要一个新的模块,只需要再创建一个如“stu4.c”,并将其插入结构体student中就可以,十分的方便且不会影响到其他的模块。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/599779.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vmware安装redhat 7.6 操作系统

vmware安装redhat 7.6 操作系统 1、下载redhat 7.6 操作系统镜像文件2、安装redhat 7.6操作系统3、配置redhat 7.6 操作系统3.1、配置静态IP地址 和 dns3.2、查看磁盘分区3.3、查看系统版本 1、下载redhat 7.6 操作系统镜像文件 链接: 盘盘 zwzg 文件名&#xff1a;rhel-serv…

Ubuntu20 编译 Android 12源码

1.安装基础库 推荐使用 Ubuntu 20.04 及以上版本编译&#xff0c;会少不少麻烦&#xff0c;以下是我的虚拟机配置 执行命令安装依赖库 // 第一步执行 update sudo apt-get update//安装相关依赖sudo apt-get install -y libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-de…

无监督学习(K-Means)的认识

目录 一、无监督学习 二、无监督学习和有监督学习的区别 三、K-Means 3.1数据分析 3.2k-meas算法 3.3数据正态化后k-means 3.4找最佳k&#xff08;Elbow Plot&#xff09; 四、k-means算法的优缺点 一、无监督学习 无监督学习是一种机器学习的方法&#xff0c;…

车载 Android之 核心服务 - CarPropertyService 的VehicleHAL

前言: 本文是车载Android之核心服务-CarPropertyService的第二篇&#xff0c;了解一下CarPropertyService的VehicleHAL, 第一篇在车载 Android之 核心服务 - CarPropertyService 解析-CSDN博客&#xff0c;有兴趣的 朋友可以去看下。 本节介绍 AndroidAutomotiveOS中对于 Veh…

【大数据】Zookeeper 集群及其选举机制

Zookeeper 集群及其选举机制 1.安装 Zookeeper 集群2.如何选取 Leader 1.安装 Zookeeper 集群 我们之前说了&#xff0c;Zookeeper 集群是由一个领导者&#xff08;Leader&#xff09;和多个追随者&#xff08;Follower&#xff09;组成&#xff0c;但这个领导者是怎么选出来的…

PTA——逆序的三位数

程序每次读入一个正3位数&#xff0c;然后输出按位逆序的数字。注意&#xff1a;当输入的数字含有结尾的0时&#xff0c;输出不应带有前导的0。比如输入700&#xff0c;输出应该是7。 输入格式&#xff1a; 每个测试是一个3位的正整数。 输出格式&#xff1a; 输出按位逆序…

2025年考研数学题型、题量预测和真题(送35页考研数学大纲详解)

2024年考研的分数线在陆续发布中&#xff0c;在此&#xff0c;六分成长祝福所有努力奋斗的学子们都能进入考研的复试&#xff0c;并顺利录取&#xff0c;2024年9月进入自己心目中的高校、院系和专业继续深造。 与此同时&#xff0c;2025年的考研大幕已经徐徐拉开&#xff0c;现…

书生·浦语大模型全链路开源体系(陈恺|上海人工智能实验室 青年科学家)-听课笔记

大模型重要性 大模型确实已成为发展通用人工智能&#xff08;AGI&#xff09;的重要途径。它们通过整合和处理大量数据&#xff0c;学习语言、图像、声音等多种模式的表示&#xff0c;以此来模拟人类的学习和思维方式。通过不断地学习和优化&#xff0c;这些模型能够在各种任…

DBeaver配置达梦数据库连接

随着信创逐渐推广&#xff0c;达梦数据库也成为流行。下面展示如何使用dbeaver配置达梦数据库连接 1 驱动新建 菜单&#xff0c;数据库->驱动管理器 2 驱动信息填写 选择新建之后&#xff0c;弹出一个填写页面 需要填写的几个关键信息&#xff1a; 驱动名称&#xff1a;…

zookeeper应用场景之分布式的ID生成器

1. 分布式ID生成器的使用场景 在分布式系统中&#xff0c;分布式ID生成器的使用场景非常之多&#xff1a; 大量的数据记录&#xff0c;需要分布式ID。大量的系统消息&#xff0c;需要分布式ID。大量的请求日志&#xff0c;如restful的操作记录&#xff0c;需要唯一标识&#x…

新手学习易语言中文编程,易语言从入门到精通教学

一、教程描述 本套教程共有100集&#xff0c;并且有大量的课件资料&#xff0c;可能是截止到目前为止&#xff0c;最为全面系统的易语言教程了&#xff0c;其中有些视频是.exe文件&#xff0c;可以下载到本地播放。本套易语言教程&#xff0c;大小14.59G&#xff0c;共有6个压…

【Java并发】深入浅出 synchronized关键词原理-下

上一篇文章&#xff0c;简要介绍了syn的基本用法和monter对象的结构&#xff0c;本篇主要深入理解&#xff0c;偏向锁、轻量级锁、重量级锁的本质。 对象内存布局 Hotspot虚拟机中&#xff0c;对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据 (Instance Da…

互联网广告行业发展历程

在20年的历程中&#xff0c;广告主与媒体方持续面对着一些问题&#xff0c;一些核心问题推动了行业的迭代。 互联网广告经过了20年左右的高速发展&#xff0c;已愈发成熟&#xff0c;其历程是有趣的。 对互联网广告发展的理解&#xff0c;网上的文章并不多&#xff0c;已有的…

第12课 利用openCV检测物体是否运动了

FFmpeg与openCV绝对是绝配。前面我们已经基本熟悉了FFmpeg的工作流程&#xff0c;这一章我们重点来看看openCV。 在前面&#xff0c;我们已经使用openCV打开过摄像头并在MFC中显示图像&#xff0c;但openCV能做的要远超你的想像&#xff0c;比如可以用它来实现人脸检测、车牌识…

【Netapp数据恢复】Netapp存储lun被删除如何恢复数据?

Netapp存储数据恢复环境&故障情况&#xff1a; 某单位一台Netapp存储&#xff0c;该Netapp存储内共有数十块SAS硬盘。 工作人员误操作删除了Netapp存储中12个lun&#xff0c;删除的数据包括客户信息和其他重要数据。 Netapp存储数据恢复过程&#xff1a; 1、将故障存储中所…

C#利用openvino部署PP-TinyPose人体姿态识别

【官方框架地址】 github.com/PaddlePaddle/PaddleDetection 【算法介绍】 关键点检测算法往往需要部署在轻量化、边缘端设备上&#xff0c;因此长期以来都存在一个难题&#xff1a;精度高、速度则慢、算法体积也随之增加。而PP-TinyPose的出世彻底打破了这个僵局&#xff0c…

43 tmpfs/devtmpfs 文件系统

前言 在 linux 中常见的文件系统 有很多, 如下 基于磁盘的文件系统, ext2, ext3, ext4, xfs, btrfs, jfs, ntfs 内存文件系统, procfs, sysfs, tmpfs, squashfs, debugfs 闪存文件系统, ubifs, jffs2, yaffs 文件系统这一套体系在 linux 有一层 vfs 抽象, 用户程序不用…

Selenium库和ChromeDriver谷歌驱动最新版安装

1.安装selenium库 使用pip安装第三方库selenium&#xff0c;速度较慢。 pip install selenium 使用国内清华源安装第三方库selenium&#xff0c;速度较快。 pip install selenium -i https://pypi.tuna.tsinghua.edu.cn/simple 2.安装谷歌浏览器驱动 驱动下载链接&#x…

【生成人工智能】Ray如何解决生成人工智能基础设施的常见生产挑战

这是我们生成人工智能博客系列的第一部分。在这篇文章中&#xff0c;我们讨论了如何使用Ray来生产常见的生成模型工作负载。即将发布的一篇博客将深入探讨Alpa等项目为什么要使用Ray来扩展大型模型。 生成的图像和语言模型有望改变企业的设计、支持、开发等方式。本博客重点关…

Android ValueAnimator属性动画ObjectAnimator使View颜色渐变,Kotlin

Android ValueAnimator属性动画ObjectAnimator使View颜色渐变&#xff0c;Kotlin 设置背景颜色渐变&#xff1a; private var iv: ImageView? nulloverride fun onCreate(savedInstanceState: Bundle?) {super.onCreate(savedInstanceState)setContentView(R.layout.activit…