基于金枪鱼群算法优化的BP神经网络(预测应用) - 附代码

基于金枪鱼群算法优化的BP神经网络(预测应用) - 附代码

文章目录

  • 基于金枪鱼群算法优化的BP神经网络(预测应用) - 附代码
    • 1.数据介绍
    • 2.金枪鱼群优化BP神经网络
      • 2.1 BP神经网络参数设置
      • 2.2 金枪鱼群算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用金枪鱼群算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.金枪鱼群优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 金枪鱼群算法应用

金枪鱼群算法原理请参考:https://blog.csdn.net/u011835903/article/details/123562840

金枪鱼群算法的参数设置为:

popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从金枪鱼群算法的收敛曲线可以看到,整体误差是不断下降的,说明金枪鱼群算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59904.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java基础增强】Stream流

1.Stream流 1.1体验Stream流【理解】 案例需求 按照下面的要求完成集合的创建和遍历 创建一个集合,存储多个字符串元素 把集合中所有以"张"开头的元素存储到一个新的集合 把"张"开头的集合中的长度为3的元素存储到一个新的集合 遍历上一步得…

Swift使用PythonKit调用Python

打开Xcode项目。然后选择“File→Add Packages”,然后输入软件包依赖链接: ​https://github.com/pvieito/PythonKit.git https://github.com/kewlbear/Python-iOS.git Python-iOS包允许在iOS应用程序中使用python模块。 用法: import Pyth…

leetcode-188-买卖股票的最佳时机 IV

1. 问题描述 https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/description/ 2. 解题代码 public class Solution {public int MaxProfit(int k, int[] prices) {if(prices.Length<2){return 0;}if(k0){return 0;}List<int> listValuenew List<…

【项目 计网7】4.20 多进程实现并发服务器 4.22 多线程实现并发服务器

文章目录 4.20 多进程实现并发服务器server_process.cclient.c4.22 多线程实现并发服务器客户端代码&#xff1a;服务端代码&#xff1a; 4.20 多进程实现并发服务器 要实现TCP通信服务器处理并发的任务&#xff0c;使用多线程或者多进程来解决。 思路&#xff1a; 1、一个父进…

省级智慧农业大数据平台项目规划建设方案[195页Word]

导读:原文《省级智慧农业大数据平台项目规划建设方案[195页Word]》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 1 农业大数据平台项目概述 1.1 建设背景 1.2 农业大数据带了的新的挑战 1.2.1 数据挖掘搜集复杂…

VBA:按照Excel工作表中的名称列自动汇总多个工作薄中对应sheet中所需要的数据

需求如下&#xff1a; B列为产品名为合并单元格&#xff0c;C列为供应商名&#xff0c;G、H列为金额数据&#xff1b;数据源放在同一个文件夹内&#xff0c;B列产品名来源于工作薄名称中间的字符串&#xff0c;C列供应商名来源于工作薄中的sheet名&#xff1b;G、H列金额数据来…

【leetcode 力扣刷题】字符串翻转合集(全部反转///部分反转)

字符串翻转合集 344. 反转字符串541. 反转字符串Ⅱ151. 反转字符串中的单词剑指 Offer 58 - II. 左旋转字符串反转单词思路循环挪动子串和子串的拼接 344. 反转字符串 题目链接&#xff1a;344. 反转字符串 题目内容&#xff1a; 题目中重点强调了必须原地修改输入数组&#…

2023_Spark_实验三:基于IDEA开发Scala例子

一、创建一个空项目&#xff0c;作为整个项目的基本框架 二、创建SparkStudy模块&#xff0c;用于学习基本的Spark基础 三、创建项目结构 1、在SparkStudy模块下的pom.xml文件中加入对应的依赖&#xff0c;并等待依赖包下载完毕。 在pom.xml文件中加入对应的依赖 ​<!-- S…

理论转换实践之keepalived+nginx实现HA

背景&#xff1a; keepalivednginx实现ha是网站和应用服务器常用的方法&#xff0c;之前项目中单独用nginx实现过负载均衡和服务转发&#xff0c;keepalived一直停留在理论节点&#xff0c;加之最近工作编写的一个技术文档用到keepalived&#xff0c;于是便有了下文。 服务组件…

基于MyBatis注解的学生管理程序--mybatis注解开发的练手项目

基于MyBatis注解的学生管理程序 需求&#xff1a;完成基于MyBatis注解的学生管理程序&#xff0c;能够用MyBatis注解实现查询操作、实现修改操作、实现一对多查询 &#xff08;1&#xff09;MyBatis注解开发实现查询操作。根据表1和表2在数据库分别创建一个学生表tb_student和…

论文笔记: One Fits All:Power General Time Series Analysis by Pretrained LM

1 intro 时间序列领域预训练模型/foundation 模型的研究还不是很多 主要挑战是缺乏大量的数据来训练用于时间序列分析的基础模型——>论文利用预训练的语言模型进行通用的时间序列分析 为各种时间序列任务提供了一个统一的框架 论文还调查了为什么从语言领域预训练的Transf…

ubuntu 挂载硬盘操作

1. 查看磁盘 sudo fdisk -l 2. 查看UUID sudo blkid记录下待挂载硬盘的UUID, 后面要使用 ps. 如果报错&#xff0c;检查是否已格式化硬盘 查看新硬盘的盘符&#xff0c;我的是/dev/sda&#xff0c;用下述命令格式化 sudo mkfs -t ext4 /dev/sda3. 创建挂载点 我的是在/mnt…

C语言控制语句——分支语句

条件语句用来根据不同的条件来执行不同的语句&#xff0c;C语言中常用的条件语句包括if语句和switch语句。 if 语句 语法格式&#xff1a; if (条件) {条件成立时&#xff0c;要做的事…… }案例需求&#xff1a; 定义一个整数变量记录年龄判断是否满 18 岁 &#xff08;>…

dart 学习 之 同步生成器(sync*)和 异步生成器(async*)

同步生成器&#xff08;sync*&#xff09;和异步生成器&#xff08;async*&#xff09;都是 Dart 中用于逐步产生多个值的生成器类型&#xff0c;但它们之间有一些重要的区别&#xff1a; 执行方式&#xff1a; 同步生成器&#xff08;sync*&#xff09;&#xff1a; 同步生成器…

本地docker registry 搭建

#!/bin/bash DOCKER_REGISTRY_ROOT/data0/docker/registry DOMAINexample.host.com #生成证书&#xff1a;https://goharbor.io/docs/2.6.0/install-config/configure-https/ mkdir $DOCKER_REGISTRY_ROOT/certs cd $DOCKER_REGISTRY_ROOT/certs openssl genrsa -out ca.key 40…

[Agent]-----MRKLAgentForChatModels组件开发

参考资料&#xff1a; https://python.langchain.com/docs/modules/agents/agent_types/react https://python.langchain.com/docs/modules/agents/how_to/custom_mrkl_agent https://python.langchain.com/docs/modules/agents/how_to/mrkl 该agent主要使用ReAct框架来决定操作…

stm32之24.RTC闹钟usart端口修改配置

&#xff08;需要修改&#xff09; 源码 while(1){//rtc唤醒事件if(g_rtc_wakeup_event){//获取日期RTC_GetDate(RTC_Format_BCD,&RTC_DateStructure);printf("20%02x/%02x/%02xWeek:%x\r\n",RTC_DateStructure.RTC_Year,RTC_DateStructure.RTC_Month,RTC_Date…

d3dx9_35.dll丢失怎么解决

今天&#xff0c;我将为大家介绍关于电脑d3dx9_35.dll丢失的4种详细修复方法。希望通过这次分享&#xff0c;能够帮助大家解决在日常工作和生活中遇到的一些问题。 首先&#xff0c;让我们来了解一下d3dx9_35.dll是什么&#xff1f; d3dx9_35.dll是一个非常重要的动态链接库文…

vue2 自定义指令实现可移动模态框效果

vue2 自定义指令实现可移动模态框效果 此效果通过 vue 指令方式实现任意元素可拖拽移动。 参考官网指令介绍 https://v2.cn.vuejs.org/v2/guide/custom-directive.html 在 drag.js 文件中使用 Vue.directive() 注册一个全局自定义指令 v-drag import Vue from vue; // 1.参数一…

openGauss学习笔记-51 openGauss 高级特性-列存储

文章目录 openGauss学习笔记-51 openGauss 高级特性-列存储51.1 语法格式51.2 参数说明51.3 示例 openGauss学习笔记-51 openGauss 高级特性-列存储 openGauss支持行列混合存储。行存储是指将表按行存储到硬盘分区上&#xff0c;列存储是指将表按列存储到硬盘分区上。 行、列…