1. 人脸识别:
Yolov8可用于人脸识别,它可以识别人脸的位置、大小和角度等信息,并对人脸进行精确的识别。通过使用Yolov8,可以实现高效准确的人脸识别,不仅可以应用于安防领域,也可以应用于人脸支付、人脸门禁等场景。
2. 脸部关键点检测:
除了人脸识别外,Yolov8还可以用于脸部关键点检测。它可以检测出人脸的各个部位,如眼睛、鼻子、嘴巴等,并预测出它们的坐标位置。这种技术可以被广泛应用于人脸美化、表情识别、虚拟试妆等领域。
3. 基于深度学习的模型:
Yolov8是一个基于深度学习的模型,它使用卷积神经网络(Convolutional Neural Network)对图像进行处理和特征提取。通过使用深度学习技术,Yolov8可以自动地学习人脸和脸部关键点的特征,从而提高检测的精度和准确度。
4. 高效准确的检测能力:
Yolov8具有高效准确的检测能力,可以在较短的时间内完成对图像中人脸和脸部关键点的检测任务。同时,Yolov8还可以实现实时检测,可以应用于视频监控、直播等场景。
总之,Yolov8是一种强大的目标检测模型,在人脸识别和脸部关键点检测方面有广泛的应用前景。通过使用Yolov8,可以实现高效准确的检测,并为各种应用场景提供更好的解决方案。
YOLOv8 脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。
YOLOv8是一种基于深度学习的目标检测算法,通过将目标检测问题转化为一个回归问题,可以实现实时的目标检测。YOLOv8 Face项目在YOLOv8的基础上进行了改进,使其更加适用于人脸检测。以下是YOLOv8 Face项目的一些特点和关键技术:
高准确性:
YOLOv8
Face采用了一系列的优化策略,包括网络结构的设计、数据增强和训练技巧等,从而提高了模型的准确性。它能够精确地检测出各种不同姿态、光照和遮挡条件下的人脸。
实时性能:
YOLOv8Face具有较高的实时性能,可以在实时图像和视频流中快速检测人脸。它采用了一种轻量级的网络结构和高效的推理算法,以实现实时的人脸检测。
多尺度检测:
为了适应不同大小和尺度的人脸,YOLOv8 Face使用了多尺度检测技术。通过在不同尺度下进行检测,可以提高模型对小尺寸人脸的检测能力。
数据增强:
YOLOv8 Face使用了各种数据增强技术,如随机裁剪、旋转和缩放等,以增加训练数据的多样性和丰富性。这有助于提高模型的泛化能力和鲁棒性。
高效推理:
为了提高推理效率,YOLOv8 Face使用了一些优化技术,如模型压缩、量化和推理引擎的优化等。这使得模型可以在嵌入式设备和移动端实现快速的人脸检测。
代码运行
数据准备
- 下载WIDERFace数据集
- 从Google Drive下载注释文件
- 进入data文件夹
- 运行python3 train2yolo.py /path/to/original/widerface/train` [/path/to/save/widerface/train],将训练集转换为YOLOv5格式
- 运行python3 val2yolo.py /path/to/original/widerface [/path/to/save/widerface/val],将验证集转换为YOLOv5格式
训练
6.运行 CUDA_VISIBLE_DEVICES="0,1,2,3" python3 train.py --data data/widerface.yaml --cfg models/yolov5s.yaml --weights 'pretrained models'
,进行训练
WIDERFace评估
- 进入
widerface_evaluat
e文件夹 - 运行
python3 evaluation.py
,进行评估
demo代码
运行下列demo示例,可以帮助我们推理出结果!!!!!!
import argparse
import time
from pathlib import Pathimport cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import randomfrom models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronizeddef detect(save_img=False):source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizeprint('weights: ', weights)webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))# Directoriessave_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir# Initializeset_logging()device = select_device(opt.device)half = device.type != 'cpu' # half precision only supported on CUDA# Load modelmodel = attempt_load(weights, map_location=device) # load FP32 modelimgsz = check_img_size(imgsz, s=model.stride.max()) # check img_sizeif half:model.half() # to FP16# Second-stage classifierclassify = Falseif classify:modelc = load_classifier(name='resnet101', n=2) # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = Truecudnn.benchmark = True # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz)else:save_img = Truedataset = LoadImages(source, img_size=imgsz)# Get names and colorsnames = model.module.names if hasattr(model, 'module') else model.namescolors = [[random.randint(0, 255) for _ in range(3)] for _ in names]# Run inferencet0 = time.time()img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img_ = model(img.half() if half else img) if device.type != 'cpu' else None # run oncefor path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float() # uint8 to fp16/32img /= 255.0 # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = time_synchronized()pred = model(img, augment=opt.augment)[0]# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# Process detectionsfor i, det in enumerate(pred): # detections per imageif webcam: # batch_size >= 1p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.countelse:p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)p = Path(p) # to Pathsave_path = str(save_dir / p.name) # img.jpgtxt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txts += '%gx%g ' % img.shape[2:] # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwhif len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print resultsfor c in det[:, -1].unique():n = (det[:, -1] == c).sum() # detections per classs += f'{n} {names[int(c)]}s, ' # add to string# Write resultsfor *xyxy, conf, cls in reversed(det):if save_txt: # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or view_img: # Add bbox to imagelabel = f'{names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)# Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')# Stream resultsif view_img:cv2.imshow(str(p), im0)if cv2.waitKey(1) == ord('q'): # q to quitraise StopIteration# Save results (image with detections)if save_img:if dataset.mode == 'image':cv2.imwrite(save_path, im0)else: # 'video'if vid_path != save_path: # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release() # release previous video writerfourcc = 'mp4v' # output video codecfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''print(f"Results saved to {save_dir}{s}")print(f'Done. ({time.time() - t0:.3f}s)')if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', nargs='+', type=str, default='./weights/yolov5s.pt', help='model.pt path(s)')parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcamparser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--view-img', action='store_true', help='display results')parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--update', action='store_true', help='update all models')parser.add_argument('--project', default='runs/detect', help='save results to project/name')parser.add_argument('--name', default='exp', help='save results to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')opt = parser.parse_args()print(opt)with torch.no_grad():if opt.update: # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:detect()strip_optimizer(opt.weights)else:detect()
总之,YOLOv8 Face项目是一个基于YOLOv8算法的人脸检测项目,具有高准确性、实时性能和多尺度检测等特点。它可以广泛应用于人脸识别、人脸表情分析、人脸属性识别等领域,为人脸相关的应用提供强大的支持。