互联网加竞赛 基于CNN实现谣言检测 - python 深度学习 机器学习

文章目录

  • 1 前言
    • 1.1 背景
  • 2 数据集
  • 3 实现过程
  • 4 CNN网络实现
  • 5 模型训练部分
  • 6 模型评估
  • 7 预测结果
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于CNN实现谣言检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1.1 背景

社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不安定因素,并对经济和社会产生巨大的影响。

2 数据集

本项目所使用的数据是从新浪微博不实信息举报平台抓取的中文谣言数据,数据集中共包含1538条谣言和1849条非谣言。

如下图所示,每条数据均为json格式,其中text字段代表微博原文的文字内容。

在这里插入图片描述

每个文件夹里又有很多新闻文本。

在这里插入图片描述
每个文本又是json格式,具体内容如下:

在这里插入图片描述

3 实现过程

步骤入下:

*(1)解压数据,读取并解析数据,生成all_data.txt
*(2)生成数据字典,即dict.txt
*(3)生成数据列表,并进行训练集与验证集的划分,train_list.txt 、eval_list.txt
*(4)定义训练数据集提供器train_reader和验证数据集提供器eval_reader

import zipfile
import os
import io
import random
import json
import matplotlib.pyplot as plt
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Linear, Embedding
from paddle.fluid.dygraph.base import to_variable#解压原始数据集,将Rumor_Dataset.zip解压至data目录下
src_path="/home/aistudio/data/data36807/Rumor_Dataset.zip" #这里填写自己项目所在的数据集路径
target_path="/home/aistudio/data/Chinese_Rumor_Dataset-master"
if(not os.path.isdir(target_path)):z = zipfile.ZipFile(src_path, 'r')z.extractall(path=target_path)z.close()#分别为谣言数据、非谣言数据、全部数据的文件路径
rumor_class_dirs = os.listdir(target_path+"非开源数据集") # 这里填写自己项目所在的数据集路径
non_rumor_class_dirs = os.listdir(target_path+"非开源数据集")
original_microblog = target_path+"非开源数据集"
#谣言标签为0,非谣言标签为1
rumor_label="0"
non_rumor_label="1"#分别统计谣言数据与非谣言数据的总数
rumor_num = 0
non_rumor_num = 0
all_rumor_list = []
all_non_rumor_list = []#解析谣言数据
for rumor_class_dir in rumor_class_dirs: if(rumor_class_dir != '.DS_Store'):#遍历谣言数据,并解析with open(original_microblog + rumor_class_dir, 'r') as f:rumor_content = f.read()rumor_dict = json.loads(rumor_content)all_rumor_list.append(rumor_label+"\t"+rumor_dict["text"]+"\n")rumor_num +=1
#解析非谣言数据
for non_rumor_class_dir in non_rumor_class_dirs: if(non_rumor_class_dir != '.DS_Store'):with open(original_microblog + non_rumor_class_dir, 'r') as f2:non_rumor_content = f2.read()non_rumor_dict = json.loads(non_rumor_content)all_non_rumor_list.append(non_rumor_label+"\t"+non_rumor_dict["text"]+"\n")non_rumor_num +=1print("谣言数据总量为:"+str(rumor_num))
print("非谣言数据总量为:"+str(non_rumor_num))#全部数据进行乱序后写入all_data.txt
data_list_path="/home/aistudio/data/"
all_data_path=data_list_path + "all_data.txt"
all_data_list = all_rumor_list + all_non_rumor_listrandom.shuffle(all_data_list)#在生成all_data.txt之前,首先将其清空
with open(all_data_path, 'w') as f:f.seek(0)f.truncate() with open(all_data_path, 'a') as f:for data in all_data_list:f.write(data) 
print('all_data.txt已生成')

在这里插入图片描述

接下来就是生成数据字典。


# 生成数据字典
def create_dict(data_path, dict_path):
with open(dict_path, ‘w’) as f:
f.seek(0)
f.truncate()

    dict_set = set()# 读取全部数据with open(data_path, 'r', encoding='utf-8') as f:lines = f.readlines()# 把数据生成一个元组for line in lines:content = line.split('\t')[-1].replace('\n', '')for s in content:dict_set.add(s)# 把元组转换成字典,一个字对应一个数字dict_list = []i = 0for s in dict_set:dict_list.append([s, i])i += 1# 添加未知字符dict_txt = dict(dict_list)end_dict = {"": i}dict_txt.update(end_dict)# 把这些字典保存到本地中with open(dict_path, 'w', encoding='utf-8') as f:f.write(str(dict_txt))print("数据字典生成完成!",'\t','字典长度为:',len(dict_list))

我们可以查看一下dict_txt的内容

在这里插入图片描述

接下来就是数据列表的生成


# 创建序列化表示的数据,并按照一定比例划分训练数据与验证数据
def create_data_list(data_list_path):

    with open(os.path.join(data_list_path, 'dict.txt'), 'r', encoding='utf-8') as f_data:dict_txt = eval(f_data.readlines()[0])with open(os.path.join(data_list_path, 'all_data.txt'), 'r', encoding='utf-8') as f_data:lines = f_data.readlines()i = 0with open(os.path.join(data_list_path, 'eval_list.txt'), 'a', encoding='utf-8') as f_eval,\open(os.path.join(data_list_path, 'train_list.txt'), 'a', encoding='utf-8') as f_train:for line in lines:title = line.split('\t')[-1].replace('\n', '')lab = line.split('\t')[0]t_ids = ""if i % 8 == 0:for s in title:temp = str(dict_txt[s])t_ids = t_ids + temp + ','t_ids = t_ids[:-1] + '\t' + lab + '\n'f_eval.write(t_ids)else:for s in title:temp = str(dict_txt[s])t_ids = t_ids + temp + ','t_ids = t_ids[:-1] + '\t' + lab + '\n'f_train.write(t_ids)i += 1print("数据列表生成完成!")

定义数据读取器


def data_reader(file_path, phrase, shuffle=False):
all_data = []
with io.open(file_path, “r”, encoding=‘utf8’) as fin:
for line in fin:
cols = line.strip().split(“\t”)
if len(cols) != 2:
continue
label = int(cols[1])

            wids = cols[0].split(",")all_data.append((wids, label))if shuffle:if phrase == "train":random.shuffle(all_data)def reader():for doc, label in all_data:yield doc, labelreturn readerclass SentaProcessor(object):def __init__(self, data_dir,):self.data_dir = data_dirdef get_train_data(self, data_dir, shuffle):return data_reader((self.data_dir + "train_list.txt"), "train", shuffle)def get_eval_data(self, data_dir, shuffle):return data_reader((self.data_dir + "eval_list.txt"), "eval", shuffle)def data_generator(self, batch_size, phase='train', shuffle=True):if phase == "train":return paddle.batch(self.get_train_data(self.data_dir, shuffle),batch_size,drop_last=True)elif phase == "eval":return paddle.batch(self.get_eval_data(self.data_dir, shuffle),batch_size,drop_last=True)else:raise ValueError("Unknown phase, which should be in ['train', 'eval']")

总之在数据处理这一块需要我们注意的是一共生成以下的几个文件。

在这里插入图片描述

4 CNN网络实现

接下来就是构建以及配置卷积神经网络(Convolutional Neural Networks,
CNN),开篇也说了,其实这里有很多模型的选择,之所以选择CNN是因为让我们熟悉CNN的相关实现。 输入词向量序列,产生一个特征图(feature
map),对特征图采用时间维度上的最大池化(max pooling over
time)操作得到此卷积核对应的整句话的特征,最后,将所有卷积核得到的特征拼接起来即为文本的定长向量表示,对于文本分类问题,将其连接至softmax即构建出完整的模型。在实际应用中,我们会使用多个卷积核来处理句子,窗口大小相同的卷积核堆叠起来形成一个矩阵,这样可以更高效的完成运算。另外,我们也可使用窗口大小不同的卷积核来处理句子。具体的流程如下:

在这里插入图片描述
首先我们构建单层CNN神经网络。

#单层class SimpleConvPool(fluid.dygraph.Layer):def __init__(self,num_channels, # 通道数num_filters,  # 卷积核数量filter_size,  # 卷积核大小batch_size=None): # 16super(SimpleConvPool, self).__init__()self.batch_size = batch_sizeself._conv2d = Conv2D(num_channels = num_channels,num_filters = num_filters,filter_size = filter_size,act='tanh')self._pool2d = fluid.dygraph.Pool2D(pool_size = (150 - filter_size[0]+1,1),pool_type = 'max',pool_stride=1)def forward(self, inputs):# print('SimpleConvPool_inputs数据纬度',inputs.shape) # [16, 1, 148, 128]x = self._conv2d(inputs)x = self._pool2d(x)x = fluid.layers.reshape(x, shape=[self.batch_size, -1])return xclass CNN(fluid.dygraph.Layer):def __init__(self):super(CNN, self).__init__()self.dict_dim = train_parameters["vocab_size"]self.emb_dim = 128   #emb纬度self.hid_dim = [32]  #卷积核数量self.fc_hid_dim = 96  #fc参数纬度self.class_dim = 2    #分类数self.channels = 1     #输入通道数self.win_size = [[3, 128]]  # 卷积核尺寸self.batch_size = train_parameters["batch_size"] self.seq_len = train_parameters["padding_size"]self.embedding = Embedding( size=[self.dict_dim + 1, self.emb_dim],dtype='float32', is_sparse=False)self._simple_conv_pool_1 = SimpleConvPool(self.channels,self.hid_dim[0],self.win_size[0],batch_size=self.batch_size)self._fc1 = Linear(input_dim = self.hid_dim[0],output_dim = self.fc_hid_dim,act="tanh")self._fc_prediction = Linear(input_dim = self.fc_hid_dim,output_dim = self.class_dim,act="softmax")def forward(self, inputs, label=None):emb = self.embedding(inputs) # [2400, 128]# print('CNN_emb',emb.shape)  emb = fluid.layers.reshape(   # [16, 1, 150, 128]emb, shape=[-1, self.channels , self.seq_len, self.emb_dim])# print('CNN_emb',emb.shape)conv_3 = self._simple_conv_pool_1(emb)fc_1 = self._fc1(conv_3)prediction = self._fc_prediction(fc_1)if label is not None:acc = fluid.layers.accuracy(prediction, label=label)return prediction, accelse:return prediction

接下来就是参数的配置,不过为了在模型训练过程中更直观的查看我们训练的准确率,我们首先利用python的matplotlib.pyplt函数实现一个可视化图,具体的实现如下:


def draw_train_process(iters, train_loss, train_accs):
title=“training loss/training accs”
plt.title(title, fontsize=24)
plt.xlabel(“iter”, fontsize=14)
plt.ylabel(“loss/acc”, fontsize=14)
plt.plot(iters, train_loss, color=‘red’, label=‘training loss’)
plt.plot(iters, train_accs, color=‘green’, label=‘training accs’)
plt.legend()
plt.grid()
plt.show()

5 模型训练部分


def train():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
# with fluid.dygraph.guard(place = fluid.CPUPlace()):

        processor = SentaProcessor( data_dir="data/")train_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"],phase='train',shuffle=True)model = CNN()sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["adam"],parameter_list=model.parameters())steps = 0Iters,total_loss, total_acc = [], [], []for eop in range(train_parameters["epoch"]):for batch_id, data in enumerate(train_data_generator()):steps += 1#转换为 variable 类型doc = to_variable(np.array([np.pad(x[0][0:train_parameters["padding_size"]],  #对句子进行padding,全部填补为定长150(0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"])) # 用  的id 进行填补for x in data]).astype('int64').reshape(-1))#转换为 variable 类型label = to_variable(np.array([x[1] for x in data]).astype('int64').reshape(train_parameters["batch_size"], 1))model.train() #使用训练模式prediction, acc = model(doc, label)loss = fluid.layers.cross_entropy(prediction, label)avg_loss = fluid.layers.mean(loss)avg_loss.backward()sgd_optimizer.minimize(avg_loss)model.clear_gradients()if steps % train_parameters["skip_steps"] == 0:Iters.append(steps)total_loss.append(avg_loss.numpy()[0])total_acc.append(acc.numpy()[0])print("eop: %d, step: %d, ave loss: %f, ave acc: %f" %(eop, steps,avg_loss.numpy(),acc.numpy()))if steps % train_parameters["save_steps"] == 0:save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)print('save model to: ' + save_path)fluid.dygraph.save_dygraph(model.state_dict(),save_path)# breakdraw_train_process(Iters, total_loss, total_acc)

训练的过程以及训练的结果如下:

在这里插入图片描述

6 模型评估


def to_eval():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):
processor = SentaProcessor(data_dir=“data/”) #写自己的路径

        eval_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"],phase='eval',shuffle=False)model_eval = CNN() #示例化模型model, _ = fluid.load_dygraph("data//save_dir_180.pdparams") #写自己的路径model_eval.load_dict(model)model_eval.eval() # 切换为eval模式total_eval_cost, total_eval_acc = [], []for eval_batch_id, eval_data in enumerate(eval_data_generator()):eval_np_doc = np.array([np.pad(x[0][0:train_parameters["padding_size"]],(0, train_parameters["padding_size"] -len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"]))for x in eval_data]).astype('int64').reshape(-1)eval_label = to_variable(np.array([x[1] for x in eval_data]).astype('int64').reshape(train_parameters["batch_size"], 1))eval_doc = to_variable(eval_np_doc)eval_prediction, eval_acc = model_eval(eval_doc, eval_label)loss = fluid.layers.cross_entropy(eval_prediction, eval_label)avg_loss = fluid.layers.mean(loss)total_eval_cost.append(avg_loss.numpy()[0])total_eval_acc.append(eval_acc.numpy()[0])print("Final validation result: ave loss: %f, ave acc: %f" %(np.mean(total_eval_cost), np.mean(total_eval_acc) ))   

评估准确率如下:

在这里插入图片描述

7 预测结果


# 获取数据
def load_data(sentence):
# 读取数据字典
with open(‘data/dict.txt’, ‘r’, encoding=‘utf-8’) as f_data:
dict_txt = eval(f_data.readlines()[0])
dict_txt = dict(dict_txt)
# 把字符串数据转换成列表数据
keys = dict_txt.keys()
data = []
for s in sentence:
# 判断是否存在未知字符
if not s in keys:
s = ‘’
data.append(int(dict_txt[s]))
return data

train_parameters["batch_size"] = 1
lab = [ '谣言', '非谣言']with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):data = load_data('兴仁县今天抢小孩没抢走,把孩子母亲捅了一刀,看见这车的注意了,真事,车牌号辽HFM055!!!!!赶紧散播! 都别带孩子出去瞎转悠了 尤其别让老人自己带孩子出去 太危险了 注意了!!!!辽HFM055北京现代朗动,在各学校门口抢小孩!!!110已经 证实!!全市通缉!!')data_np = np.array(data)data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)infer_np_doc = to_variable(data_np)model_infer = CNN()model, _ = fluid.load_dygraph("data/save_dir_900.pdparams")model_infer.load_dict(model)model_infer.eval()result = model_infer(infer_np_doc)print('预测结果为:', lab[np.argmax(result.numpy())])

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/598310.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BUUCTF crypto做题记录(5)新手向

一、传统知识古典密码 加上一个数,就有点移位加密的味道,很有可能就是凯撒加密 辛卯28,癸巳30,丙戌23,辛未8,庚辰17,癸酉10,己卯16,癸巳30 加1之后,28变29&a…

详解编码与调制

编码与调制是现代通信领域的重要概念。在信息传输过程中,编码和调制起着至关重要的作用,它们帮助将数字信号转化为模拟信号,从而实现高效、可靠的数据传输。本文将从编码和调制的基本概念、常见的编码和调制技术以及其在通信领域的应用等方面…

微商城怎么弄才能开通呢?

​微商城的开通,对于许多商家来说,是进入移动电商领域的重要一步。它不仅能帮助你扩大销售渠道,还能让你更好地管理和服务你的客户。那么,微商城怎么弄才能开通呢? 1、注册微信公众号:首先,你需…

麒麟KYLINOS操作系统上扩容系统盘

原文链接:麒麟KYLINOS操作系统上扩容系统盘 hello,大家好啊!继之前我们讨论了如何在统信UOS上扩容数据盘之后,今天我要给大家带来的是在麒麟KYLINOS操作系统上扩容系统盘与数据盘的方法。随着数据的不断增长,系统盘或数…

微软 Power Platform 使用Power Automate发送邮件以Dataverse作为数据源的附件File Column

微软Power Platform使用Power Automate发送邮件添加Power Apps以Dataverse作为数据源的附件File Column方式 目录 微软Power Platform使用Power Automate发送邮件添加Power Apps以Dataverse作为数据源的附件File Column方式1、需求背景介绍2、附件列File Column介绍3、如何在Po…

分布式之任务调度Elastic-Job学习二

4 Spring 集成与分片详解 ejob-springboot 工程 4.1 pom 依赖 <properties><elastic-job.version>2.1.5</elastic-job.version> </properties> <dependency><groupId>com.dangdang</groupId><artifactId>elastic-job-lite-…

安全cdn有哪些优势

1. 免备案&#xff1a;在中国大陆地区&#xff0c;进行网站建设需要先进行备案手续&#xff0c;而安全cdn可以避免这一繁琐的步骤&#xff0c;节省时间和精力。 2. 精品线路&#xff1a;安全cdn使用的是覆盖范围更广、速度更快的香港CN2 GIA优化线路。 3. 高速稳定&#xff1a…

在vue3中使用Cesium保姆篇

1.首先新建一个vue项目 Vue.js - 渐进式 JavaScript 框架 | Vue.js 可以直接到管网中查看命令通过npm来创建一个vue3的项目 然后通过命令下载1.99的版本的cesium和plugin npm i cesium1.99 vite-plugin-cesium 下载完了以后 2.引入cesium 首先找到vue的vite.config.js …

[LitCTF 2023]这是什么?SQL !注一下 !

[LitCTF 2023]这是什么&#xff1f;SQL &#xff01;注一下 &#xff01; wp 题目描述&#xff1a;为了安全起见多带了几个套罢了o(▽)q 页面内容&#xff08;往下滑&#xff09;&#xff1a; SQL 语句已给出&#xff0c;无非是更换了闭合方式。 先输个 1 试试&#xff1a; …

【unity】基于Obi的绳/杆蓝图、绳杆区别及其创建方法

绳索 是通过使用距离和弯曲约束将粒子连接起来而形成的。由于规则粒子没有方向(只有位置)&#xff0c;因此无法模拟扭转效应(维基百科)&#xff0c;绳子也无法保持其静止形状。然而&#xff0c;与杆不同的是&#xff0c;绳索可以被撕裂/劈开&#xff0c;并且可以在运行时改变其…

轻量对象存储 LighthouseCOS 用户实践征文

产品使用攻略、上云技术实践&#xff0c;有奖征集&#xff0c;多重好礼等您带回家&#xff5e; 存储桶一键挂载轻量应用服务器&#xff0c;简单易用&#xff0c;腾讯云轻量对象存储用户实践征文活动特惠&#xff1a;腾讯云轻量云专场特惠活动。 投稿说明 1. 注册/登录腾讯云账…

【EI会议征稿通知】第三届智能电网与绿色能源国际学术会议(ICSGGE 2024)

第三届智能电网与绿色能源国际学术会议&#xff08;ICSGGE 2024&#xff09; 2024 3rd International Conference on Smart Grid and Green Energy 2024年第三届智能电网与绿色能源国际学术会议&#xff08;ICSGGE 2024&#xff09;将于2024年4月19-21日在中国成都举行。会议…

探索架构之美 | 小米分享架构师的方法论

大家好&#xff0c;我是小米&#xff01;今天我们要聊的话题可是相当精彩——“架构师的方法论”&#xff01;作为一名热爱技术的小伙伴&#xff0c;我深知在软件开发领域&#xff0c;拥有一套科学的方法论是多么的重要。所以&#xff0c;不废话&#xff0c;让我们一起踏上探索…

SpringBoot集成 Websocket 实现服务与客户端进行消息发送和接收

介绍 WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。 效果 客户端效果 服务端日志 pom依赖 <!-- websocket --> <dependency><groupId>org.springfram…

vue3+Ts+Hook的方式实现商城核心功能sku选择器

前言 Hooks是React等函数式编程框架中非常受欢迎的工具&#xff0c;随着VUE3 Composition API 函数式编程风格的推出&#xff0c;现在也受到越来越多VUE3开发者的青睐&#xff0c;它让开发者的代码具有更高的复用度且更加清晰、易于维护。 本文将通过CRMEB商城商品详情sku选择…

iOS苹果和Android安卓测试APP应用程序的差异

Hello大家好呀&#xff0c;我是咕噜铁蛋&#xff01;我们经常需要关注移动应用程序的测试和优化&#xff0c;以提供更好的用户体验。在移动应用开发领域&#xff0c;iOS和Android是两个主要的操作系统平台。本文铁蛋讲给各位小伙伴们详细介绍在App测试中iOS和Android的差异&…

Flyweight享元/共享模式(对象性能)

Flyweight 链接&#xff1a;享元模式实例代码 解析 目的 在软件系统采用纯粹对象方案的问题在于大量细粒度的对象会很快充斥在系统中&#xff0c;从而带来很高的运行时代价——主要指内存需求方面的代价。如何在避免大量细粒度对象问题的同时&#xff0c;让外部客户程序仍然…

快速、准确地检测和分类病毒序列分析工具 ViralCC的介绍和详细使用方法, 附带应用脚本

介绍 viralcc是一个基因组病毒分析工具&#xff0c;可以用于快速、准确地检测和分类病毒序列。 github&#xff1a;dyxstat/ViralCC: ViralCC: leveraging metagenomic proximity-ligation to retrieve complete viral genomes (github.com) Instruction of reproducing resul…

java基于ssm框架的滁艺咖啡在线销售系统+vue论文

摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装滁艺咖啡在线销售系统软件来发挥其高效地信息处理的作用&am…

客服系统接入FastGPT

接入FastGPT 点击【应用】【外部使用】【API访问】【新建】新建一个KEY&#xff0c;同时也可以看到我们的API根地址 这个根地址和Key可以填入任何支持OpenAI接口的应用里&#xff0c;这个接口是兼容OpenAI格式。 在客服系统【知识库AI配置】里填上接口地址和接口密钥。这样我…