基于Segformer实现PCB缺陷检测(步骤 + 代码)

导  读

    本文主要介绍基于Segformer实现PCB缺陷检测 ,并给出步骤和代码。    

背景介绍

图片

    PCB缺陷检测是电子制造的一个重要方面。利用Segformer等先进模型不仅可以提高准确性,还可以大大减少检测时间。传统方法涉及手动检查,无法扩展且容易出错。利用机器学习,特别是 Segformer模型,提供自动化且精确的解决方案。

      

实现步骤

    下面是具体步骤: 

  【1】安装所需环境。首先,我们安装所需的库。其中,albumentations用于数据增强,transformers允许访问 Segformer等预训练模型,并xmltodict帮助解析数据集的XML注释。

pip install evaluate albumentations transformers accelerate xmltodict

  【2】数据集。这个项目中使用的数据集由Roboflow提供。可以从下面链接获取:

https://universe.roboflow.com/diplom-qz7q6/defects-2q87r/dataset/16

图片

该数据集分为测试文件夹和训练文件夹,由XML格式的图像及其相应注释组成。

# Create train and test setstrain_folder = "drive/..../train/images/"test_folder = "drive/.../validation/images/"
train_img_paths = sorted([train_folder + f for f in os.listdir(train_folder) if f.endswith("jpg")])test_img_paths = sorted([test_folder + f for f in os.listdir(test_folder) if f.endswith("jpg")])train_xml_paths = [f[:-3] + "xml" for f in train_img_paths]test_xml_paths = [f[:-3] + "xml" for f in test_img_paths]
train_ds = {"image_paths": train_img_paths, "xml_paths": train_xml_paths}test_ds = {"image_paths": test_img_paths, "xml_paths": test_xml_paths}

    XML文件包含多边形标注信息,指示PCB图像上缺陷的位置。该函数process_mask读取XML标注信息并将其转换为掩码(类似图像的数组)。该掩模对应于PCB图像上的缺陷区域,基本上将缺陷与电路板的其余部分分开。

    该函数首先使用OpenCV读取原始图像。在我们初始化与输入图像大小相同的蒙版之后。根据可视化标志,蒙版可以是3通道RGB蒙版(如彩色图像)或1通道灰度蒙版。最初,该掩码中的所有值都设置为零,这意味着没有缺陷。

  【3】缺陷标注解析。对于每个缺陷标注信息:识别缺陷类型,提取缺陷的多边形形状,该多边形被绘制到初始化的蒙版上。最后,该函数弥合了XML标注信息和适合训练的格式之间的差距。给定 PCB图像及其相应的XML 注释,它会生成一个分割掩模,突出显示有缺陷的区域。掩模可以是适合训练模型的数字格式,也可以是用于人工检查的视觉格式。​​​​​​​

def process_mask(img_path, xml_path, visualize=False):    img = cv2.imread(img_path)    num_dim = 3 if visualize else 1    mask = np.zeros((img.shape[0], img.shape[1], num_dim))
    # Read xml content from the file    with open(xml_path, "r") as file:      xml_content = file.read()
    data = xmltodict.parse(xml_content)
    # If has defect mask    if "object" in data["annotation"]:        objects = data["annotation"]["object"]
        # Single defects are annotated as a single dict, not a list        if not isinstance(objects, List):          objects = [objects]
        for obj in objects:          defect_type = obj["name"]          polygon = obj["polygon"]          poly_keys = list(polygon.keys())
          # Get number of (x, y) pairs - polygon coords          poly_keys = [int(k[1:]) for k in poly_keys]          num_poly_points = max(poly_keys)
          # Parse ordered polygon coordinates          poly_coords = []          for i in range(1, num_poly_points+1):              poly_coords.append([                  int(float(polygon[f"x{i}"])),                  int(float(polygon[f"y{i}"]))              ])          poly_coords = np.array(poly_coords)
          # Draw defect segment on mask          fill_color = color_map[defect_type] if visualize else id_cat_map[defect_type]          mask = cv2.fillPoly(mask, pts=[poly_coords], color=fill_color)
    #Optional    if visualize:        cv2.imwrite("output.jpg", mask)        mask = Image.open("output.jpg")
    return mask

  【4】探索性数据分析。在训练模型之前,最好先了解数据。在这里,我们检查缺陷类型的分布并在样本图像上可视化缺陷。

图片

图片

图片

图片

    缺陷热力图显示了常见的缺陷位置,箱线图显示了缺陷尺寸的分布。

图片

    该函数旨在通过读取边界框详细信息来计算 XML 注释中存在的每个缺陷的大小。

def get_defect_sizes(xml_paths):    sizes = []    for xml_path in xml_paths:        with open(xml_path) as f:            data = xmltodict.parse(f.read())            objects = []            if 'object' in data['annotation']:                objects = data['annotation']['object']            if not isinstance(objects, list):                objects = [objects]            for obj in objects:                bndbox = obj['bndbox']                width = int(bndbox['xmax']) - int(bndbox['xmin'])                height = int(bndbox['ymax']) - int(bndbox['ymin'])                sizes.append(width * height)    return sizes

    最后,群图重点关注缺陷尺寸在整个数据集中的分布和扩散。

图片

  【5】数据增强。该albumentations库用于人为扩展训练数据集,有助于提高模型的泛化能力。唯一指定的增强是水平翻转,它将以 50% 的概率水平翻转图像。​​​​​​​

transform = A.Compose([    A.HorizontalFlip(p=0.5)])

图片

 【6】图像预处理。将图像及其掩模预处理为适合Segformer模型的格式。

preprocessor = SegformerImageProcessor()

    我们将定义一个继承自PyTorchDataset类的自定义数据集类。这个自定义数据集允许我加载和预处理 PCB 图像及其相应的缺陷掩模。

    使用 OpenCV 加载图像。使用前面讨论的函数生成缺陷掩模process_mask。使用之前初始化的图像预处理图像及其掩模SegformerImageProcessor。此步骤将图像转换为张量格式,并确保它们具有适合 Segformer 模型的大小和标准化。返回预处理的图像和掩模张量。​​​​​​​

class DefectSegmentationDataset(Dataset):  def __init__(self, dataset, mode):    self.image_paths = dataset["image_paths"]    self.xml_paths = dataset["xml_paths"]
  def __len__(self):    return len(self.image_paths)
  def __getitem__(self, idx):    # Read image    image = cv2.imread(self.image_paths[idx])
    # Get mask    mask = process_mask(self.image_paths[idx], self.xml_paths[idx])    mask = mask.squeeze()    mask = Image.fromarray(mask.astype("uint8"), "L")
    # Return preprocessed inputs    inputs = preprocessor(image, mask, ignore_index=None, return_tensors="pt")    inputs["pixel_values"] = inputs["pixel_values"].squeeze(0)    inputs["labels"] = inputs["labels"].squeeze(0)    return inputs

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/596047.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

魏副业而战:手机副业新风口,短剧内容创作实操,日赚500+的创业指南

我是魏哥,与其躺平,不如魏副业而战! 今天魏哥给大家分享一个短剧推广的副业项目。 有人会有疑惑,短剧推广是去年爆火的副业项目,现在操作是不是有点晚了。 这个大家不要有太多的顾虑。 恰恰相反,短剧推广…

【springboot项目】之秒杀项目常见问题(Seckill)

秒杀问题分为两部分:用户查看商品详情页、用户下单 项目简介: 模拟了高并发场景的商城系统,它具备秒杀功能,为了解决秒杀场景下的高并发问题。引入了 redis 作为缓存中间件,1.主要作用是缓存预热、预减库存等等。2.针…

新年话节能 电梯也减排

小伍恭祝大家2024年元旦快乐!! 目前,电梯的节能已经得到业界的广泛重视,积极推动相关的节能技术的实施,努力宣传和倡导规范的电梯的使用行为,将极大地改变我国电梯的耗能状况,为节能减排做出较大…

遥测终端机:数据世界的千里眼与顺风耳

在当今这个信息爆炸的时代,数据的重要性日益凸显。如何高效、准确地收集、传输和处理这些数据,成为了众多企业和研究机构关注的焦点。而遥测终端机,正是这样一种解决这一问题的强大工具。 遥测终端机,顾名思义,是一种…

JavaScript 基础(一)

实验需新建一个 test.html 文件&#xff0c;用于编写代码。后续的例子中&#xff0c;将不再提醒建立文件&#xff0c;大家根据个人需求自行创建对应的 html 文件&#xff0c;并完成代码练习&#xff1a; 首先来看看范例代码&#xff1a; <!doctype html> <html>&…

OpenAI API/Plus会员信用卡绑定付款方式经历

前言 9月25日起ChatGPT风控升级&#xff0c;428813的卡只可以支付Open ai API-key&#xff0c;直接订阅plus会被拒。部分用户将卡绑定美区Google pay使用app store进行订阅可以成功&#xff0c;如果您没有这两种支付方式&#xff0c;请您重新开一张534786的万事达美卡升级订阅…

光伏效果图是用什么软件建模设计的?

光伏效果图是展示光伏系统在建筑或地面上的外观和效果的图像。要创建这样的效果图&#xff0c;需要使用专业的建模和设计软件。那么&#xff0c;光伏效果图是用什么软件建模设计的呢&#xff1f; 鹧鸪云光伏设计软件&#xff1a;鹧鸪云是一款集开发、设计和施工为一体的设计软…

2023年终总结|回顾学习Tensorflow、Keras的历程

2023年4月&#xff0c;初探TensorFlow2.0&#xff0c;对比了1.0版本的差异。接着&#xff0c;学习了TensorFlow2.0的常量矩阵、四则运算以及常用函数。学习了数据切割、张量梯度计算、遍历元素、类别索引转换等技巧&#xff0c;并掌握了CNN输出特征图形状的计算方法。 在数据处…

kafka消息队列安装以及整合springboot使用

文章目录 一、JMS与AMQP二、安装2.1 Java安装2.2 Zookeeper 和 kafka安装2.3 docker-compose 安装【待定&#xff0c;远程连接可能连接不上】 三、Kafka数据存储流程和原理概述和LEOHW讲解四、代码客户端连接kafka五、**ProducerRecord和key的作用**5.1 **如果保证顺序消费&…

cnstd使用效果测试

使用参考&#xff1a;https://github.com/breezedeus/CnSTD/tree/master 原理参考&#xff1a;https://cnocr.readthedocs.io/zh/latest/intro-cnstd-cnocr.pdf 模型&#xff1a; 结论&#xff1a; 经过测试&#xff0c; 长文本检测效果不错&#xff0c;短文本可能角度不对 …

【Harmony OS - 网络请求】

在一个应用开发中&#xff0c;网络请求是必不可少的&#xff0c;我们一般用的fetch、axios来进行http请求&#xff0c;在鸿蒙中也可以通过createHppt来发生一个http请求&#xff0c;它们都是异步请求返回的Promise&#xff0c;下面我们将介绍’ohos.net.http’和axios这两种方式…

学而时习之---状态模式

在软件系统中&#xff0c;有些对象也像水一样具有多种状态&#xff0c; 这些状态在某些情况下能够相互转换&#xff0c; 而且对象在不同的状态下具有不同的行为。 为了更好地对这些具有多种状态的对象进行设计。 使用一种被称为状态模式的设计模式。 状态模式用于解决系统中复…

[DevOps-05] Jenkins实现CI/CD操作

一、简要说明 基于Jenkins拉取GitLab的SpringBoot代码进行构建发布到测试环境实现持续集成 基于Jenkins拉取GitLab指定发行版本的SpringBoot代码进行构建发布到生产环境实现CD实现持续部署 二、准备Springboot工程 1、IDEA新建工程 2、填写项目工程信息 3、选择Springboot版本…

不要盲目自学网络安全!学习顺序特别重要!

前言 一、什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防…

中国植被分区数据,shp数据,2000年,字段包含区域代码、名称、地带代码及名称,附高清图可视化

数据名称: 中国植被分区数据 数据格式: Shp 数据时间: 2000年 数据几何类型: 面 数据坐标系: WGS84 数据来源&#xff1a;网络公开数据 数据字段&#xff1a; 序号字段名称字段说明1zbqydm植被区域代码2zbqymc植被区域名称3zbdddm植被地带代码4zbddmc植被地带名称 …

接口和抽象类有什么共同点和区别?

共同点&#xff1a; 都不能被实例化。都可以包含抽象方法。都可以有默认实现的方法&#xff08;Java 8 可以用 default 关键字在接口中定义默认方法&#xff09;。 区别&#xff1a; 接口主要用于对类的行为进行约束&#xff0c;你实现了某个接口就具有了对应的行为。抽象类…

Vue中的选项式 API 和组合式 API,两者有什么区别

Vue中的选项式 API&#xff08;Option API&#xff09;和组合式 API&#xff08;Composition API&#xff09;是两种不同的组件编写方式&#xff0c;它们各有特点和适用场景&#xff1a; 选项式 API&#xff08;Option API&#xff09;: 传统方法&#xff1a;Vue最初的编程范式…

天洑智能设计全系列产品完成银河麒麟操作系统适配!

近日&#xff0c;天洑软件智能设计全系列产品&#xff08;智能热流体仿真软件AICFD、智能结构仿真软件AIFEM、智能优化软件AIPOD、智能数据建模软件DTEmpower&#xff09;已成功完成银河麒麟桌面操作系统V10的适配工作。双方产品完全兼容&#xff0c;运行稳定、安全可靠、性能优…

freeRTOS——事件标志组知识总结及实战

1事件标志组概念 事件标志组&#xff1a;是一组事件标志位的集合&#xff0c; 可以简单的理解事件标志组&#xff0c;就是一个整数。 其特点&#xff1a; 1&#xff09;它的每一个位表示一个事件&#xff08;高8位不算&#xff09; 2&#xff09;每一位事件的含义&#xff0c;…

创建企业邮箱帐户指南:常见问题与解决方法分享

专业的电子邮件地址可以帮助客户识别商务人士&#xff0c;并了解公司给他们发邮件的目的。如果你从事管理、信息技术或人力资源工作&#xff0c;你可能会负责为一个企业建立一个企业邮箱帐户。了解如何为新员工和现有员工设置电子邮件帐户可以帮助您简化公司内部的沟通。 在这篇…